The Department of Electrical and Computer Engineering offers two undergraduate programs leading to the degree of Bachelor of Engineering, two minors, and graduate programs leading to the Master of Engineering degree and the PhD degree.

Undergraduate Programs

The Department of Electrical and Computer Engineering offers the degree of Bachelor of Engineering in two majors:

- Computer and Communications Engineering (CCE)
- Electrical and Computer Engineering (ECE)

The mission of the undergraduate programs is to impart a basic understanding of electrical and computer engineering built on a foundation of mathematics, physical sciences, and technology; to expose students to practical and major design experiences; and to provide students with a global perspective and an awareness of their leadership role in regional development. This preparation is augmented by the liberal arts education offered to all undergraduates at the American University of Beirut.

The Electrical and Computer Engineering program provides the students with options to explore, and specialize in, one or more areas of electrical and computer engineering.

The Computer and Communications Engineering program prepares its graduates for careers and higher studies in information and communication technologies.

The department also offers the following two minors:

- Minor in Information Technology
- Minor in Biomedical Engineering
Computer and Communications Engineering Program

Program Educational Objectives

• Graduates of the CCE program possess skills and knowledge that qualify them for professional practice in electrical and computer engineering, and for admission to reputable graduate programs.

• Graduates of the CCE program are capable of applying fundamental knowledge, appropriate mathematical principles and computing tools, critical thinking, and best practices in electrical and computer engineering analysis and design.

• Graduates of the CCE program are provided with an educational foundation that fosters creativity, teamwork, leadership, and communication skills, and prepares them for life-long learning along diverse career paths.

• Graduates of the CCE program have an appreciation of technical, social, economic, environmental, ethical, and global aspects of engineering practice.

Program Requirements

• Mathematics: MATH 201, MATH 202, MATH 211, MATH 218 or 219, STAT 230, and one of MATH 210, 224, 227, 251

• Sciences: PHYS 210, PHYS 210L, CHEM 201 or 202, CHEM 203 or 205, and one additional science elective

• General Education: Arabic course (according to APT), ENGL 206 and one other English course, two social sciences courses, three humanities courses, one ethics course, and ENMG 400

• ECE Core Courses: EECE 200, EECE 210, EECE 230, EECE 290, EECE 310, EECE 311, EECE 320, EECE 321, EECE 330, EECE 340, EECE 370, EECE 380, EECE 411 or 412, EECE 421, EECE 442, EECE 450, and two courses from EECE 430, 431, 432, 433

• ECE Laboratories: EECE 310L, EECE 321L, EECE 413L, EECE 442L, and one additional laboratory elective

• Electives: Six courses, at least two of which should be in ECE, subject to approval of adviser

• Approved Experience: EECE 500

• Final Year Project: EECE 501 and EECE 502

The program requirements can be completed according to the following proposed schedule:
<table>
<thead>
<tr>
<th>Term I (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 200</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 201</td>
<td>3</td>
</tr>
<tr>
<td>MATH 211</td>
<td>3</td>
</tr>
<tr>
<td>Total 15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term II (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 230</td>
<td>3</td>
</tr>
<tr>
<td>EECE 290</td>
<td>3</td>
</tr>
<tr>
<td>MATH 202</td>
<td>3</td>
</tr>
<tr>
<td>MATH 218/219</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>1</td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term III (Summer)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201/202</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 203/205</td>
<td>2</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term IV (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 310</td>
<td>3</td>
</tr>
<tr>
<td>EECE 310L</td>
<td>1</td>
</tr>
<tr>
<td>EECE 320</td>
<td>3</td>
</tr>
<tr>
<td>EECE 330</td>
<td>3</td>
</tr>
<tr>
<td>EECE 370</td>
<td>3</td>
</tr>
<tr>
<td>STAT 230</td>
<td>3</td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term V (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 311</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321L</td>
<td>1</td>
</tr>
<tr>
<td>EECE 340</td>
<td>3</td>
</tr>
<tr>
<td>EECE 380</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td></td>
</tr>
<tr>
<td>Total 16</td>
<td></td>
</tr>
<tr>
<td>Term VI (Summer)</td>
<td>Credits</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENGL English Course</td>
<td>3</td>
</tr>
<tr>
<td>ARAB Arabic Course</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term VII (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 421 Computer Architecture</td>
<td>3</td>
</tr>
<tr>
<td>EECE 430/1/2/3 Software Elective</td>
<td>3</td>
</tr>
<tr>
<td>EECE 442 Communication Systems</td>
<td>3</td>
</tr>
<tr>
<td>MATH Math Elective</td>
<td>3</td>
</tr>
<tr>
<td>ENMG 400 Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term VIII (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 411/412 Analog or Digital Integrated Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EECE 430/1/2/3 Software Elective</td>
<td>3</td>
</tr>
<tr>
<td>EECE 450 Computer Networks</td>
<td>3</td>
</tr>
<tr>
<td>EECE 413L Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td>3</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term IX (Summer)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 500 Approved Experience</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term X (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 501 Final Year Project</td>
<td>3</td>
</tr>
<tr>
<td>EECE 442L Communications Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EECE EECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>2 Electives EECE or Other</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term XI (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 502 Final Year Project</td>
<td>3</td>
</tr>
<tr>
<td>EECE Laboratory Elective</td>
<td>1</td>
</tr>
<tr>
<td>EECE EECE Elective</td>
<td>3</td>
</tr>
<tr>
<td>2 Electives EECE or Other</td>
<td>6</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>
List of Pre-Approved Electives

- Any EECE course with a number equal to or greater than 400
- CIVE 672
- MECH 633, 634, 642
- Any ENMG course with a number equal to or greater than 500
- PHYS 223, 226, 235, 236, 249
- Any STAT course with a number equal to or greater than 234

List of Science Electives

- BIOL 201, BIOL 202, BIOL 210, CHEM 201, CHEM 211, GEOL 201, GEOL 205, GEOL 211, PHYL 246, PHYS 212, PHYS 217, PHYS 223, PHYS 235, PHYS 236
Electrical and Computer Engineering Program

Program Educational Objectives

• Graduates of the ECE program possess skills and knowledge that qualify them for professional practice in electrical and computer engineering, and for admission to reputable graduate programs.

• Graduates of the ECE program are capable of applying fundamental knowledge, appropriate mathematical principles and computing tools, critical thinking, and best practices in electrical and computer engineering analysis and design.

• Graduates of the ECE program are provided with an educational foundation that fosters creativity, teamwork, leadership, and communication skills, and prepares them for lifelong learning along diverse career paths.

• Graduates of the ECE program have an appreciation of technical, social, economic, environmental, ethical, and global aspects of engineering practice.

Program Requirements

• Mathematics: MATH 201, MATH 202, MATH 211, MATH 218 or 219, STAT 230, and one of MATH 210, 224, 227, 251

• Sciences: PHYS 210, PHYS 210L, CHEM 201 or 202, CHEM 203 or 205, and one additional science elective

• General Education: Arabic course (according to APT), ENGL 206 and one other English course, two social sciences courses, three humanities courses, one ethics course, and ENMG 400

• ECE Core Courses: EECE 200, EECE 210, EECE 230, EECE 290, EECE 310, EECE 311, EECE 320, EECE 321, EECE 330, EECE 340, EECE 370, and EECE 380

• ECE Laboratories: EECE 310L, EECE 321L, and three additional laboratory electives

• Restricted Electives: six courses from the list below
 • Integrated Circuits: EECE 411 or 412
 • Computer Architecture: EECE 421
 • Software 1: EECE 430, 431, 432 or 433
 • Software 2: EECE 430, 431, 432 or 433
 • Communication Systems: EECE 442
 • Computer Networks: EECE 450
 • Control Systems: EECE 460
 • Power Systems: EECE 471
 • Power Electronics: EECE 473

• Other Electives: six courses, at least two of which should be in ECE, subject to approval of adviser

• Approved Experience: EECE 500

• Final Year Project: EECE 501 and EECE 502
The program requirements can be completed according to the following proposed schedule:

<table>
<thead>
<tr>
<th>Term I (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 200</td>
<td>3</td>
</tr>
<tr>
<td>EECE 210</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 201</td>
<td>3</td>
</tr>
<tr>
<td>MATH 201</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 210L</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term II (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 230</td>
<td>3</td>
</tr>
<tr>
<td>EECE 290</td>
<td>3</td>
</tr>
<tr>
<td>MATH 202</td>
<td>3</td>
</tr>
<tr>
<td>MATH 218/219</td>
<td>3</td>
</tr>
<tr>
<td>MATH 211</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term III (Summer)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 201/202</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 203/205</td>
<td>2</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term IV (Fall)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 310</td>
<td>3</td>
</tr>
<tr>
<td>EECE 310L</td>
<td>1</td>
</tr>
<tr>
<td>EECE 320</td>
<td>3</td>
</tr>
<tr>
<td>EECE 330</td>
<td>3</td>
</tr>
<tr>
<td>EECE 370</td>
<td>3</td>
</tr>
<tr>
<td>STAT 230</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term V (Spring)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 311</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321</td>
<td>3</td>
</tr>
<tr>
<td>EECE 321L</td>
<td>1</td>
</tr>
<tr>
<td>EECE 340</td>
<td>3</td>
</tr>
<tr>
<td>EECE 380</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
</tr>
<tr>
<td>Term</td>
<td>Course(s)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Term VI (Summer)</td>
<td></td>
</tr>
<tr>
<td>ENGL</td>
<td>English Course</td>
</tr>
<tr>
<td>ARAB</td>
<td>Arabic Course</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term VII (Fall)</td>
<td></td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>MATH</td>
<td>Math Elective</td>
</tr>
<tr>
<td>ENMG 400</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term VIII (Spring)</td>
<td></td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Restricted Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Laboratory Elective</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td></td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term IX (Summer)</td>
<td></td>
</tr>
<tr>
<td>EECE 500</td>
<td>Approved Experience</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term X (Fall)</td>
<td></td>
</tr>
<tr>
<td>EECE 501</td>
<td>Final Year Project</td>
</tr>
<tr>
<td>EECE</td>
<td>EECE Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Laboratory Elective</td>
</tr>
<tr>
<td>2 Electives</td>
<td>EECE or Other</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Term XI (Spring)</td>
<td></td>
</tr>
<tr>
<td>EECE 502</td>
<td>Final Year Project</td>
</tr>
<tr>
<td>EECE</td>
<td>EECE Elective</td>
</tr>
<tr>
<td>EECE</td>
<td>Laboratory Elective</td>
</tr>
<tr>
<td>2 Electives</td>
<td>EECE or Other</td>
</tr>
<tr>
<td>Humanities or Social Sciences Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
List of Pre-Approved Electives

- Any EECE course with a number equal to or greater than 400
- CIVE 672
- MECH 633, 634, 642
- Any ENMG course with a number equal to or greater than 500
- PHYS 223, 226, 235, 236, 249
- Any STAT course with a number equal to or greater than 234

List of Science Electives

- BIOL 201, BIOL 202, BIOL 210, CHEM 201, CHEM 211, GEOL 201, GEOL 205, GEOL 211, PHYL 246, PHYS 212, PHYS 217, PHYS 223, PHYS 235, PHYS 236

Minor in Information Technology

The Minor in Information Technology is open to all AUB students, except students majoring in Computer and Communications Engineering, Electrical and Computer Engineering, or Computer Science. Students may apply by completing a minor application form available from the ECE Department. The minor will be indicated on the transcript of the student who completes all the requirements, and who obtains an average in the minor courses of 70 or more.

The IT minor program consists of six courses: Three core courses and three electives.

Core Courses
ITEC 240, ITEC 241, ITEC 242

Elective Courses
EECE 230, EECE 321, EECE 330, EECE 430, EECE 431, EECE 432, EECE 433, EECE 450

Minor in Biomedical Engineering

The Minor in Biomedical Engineering is open to all AUB students. Students who have completed at least 60 credits at the sophomore level and higher, and who have a cumulative average of 70 or more, may apply by completing a minor application form available from the ECE Department. The minor will be indicated on the transcript of the student who completes all the requirements described below, and who obtains an average in the minor courses of 70 or more.

The minor requirements are divided into a set of core courses, and a set of elective courses.

For Engineering students, the requirements are as follows:

- EECE 401 [1 cr.]
- BIOL 201 [4 cr.]
- BIOL 202 or PHYL 246 [4 cr.]
• One core course [3 cr] chosen from EECE 601, EECE 603, or MECH 633
• One elective course from List A below [3 cr.]
• One elective course from Lists A, B, or C below [3 cr.]
Minimum number of credits: 18

For Biology students, the requirements are as follows:
• EECE 401 [1 cr.]
• BIOL 201 [4 cr.]
• BIOL 202 [4 cr.]
• (EECE 210 [3 cr] (or equivalent) and EECE 601 [3 cr.])
 or (CIVE 210 [3 cr] (or equivalent) and MECH 634 [3 cr.])
• One elective course from lists A or B below [3 cr.]
Minimum number of credits: 18

For other students, the requirements are as follows:
• EECE 401 [1 cr.]
• BIOL 201 [4 cr.]
• BIOL 202 or PHYL 246 [4 cr.]
• (EECE 210 [3 cr] (or equivalent) and EECE 601 [3 cr.])
 or (CIVE 210 [3 cr] (or equivalent) and MECH 634 [3 cr.])
• One elective course from lists A, B, or C below [3 cr.]
Minimum number of credits: 18

Elective Courses
List A: EECE 601, EECE 602, EECE 603 (unless the student takes EECE 694, in which case either EECE 694 or EECE 603 counts toward the minor), EECE 604, EECE 605, MECH 633, MECH 634

List B: MECH 624, MECH 631, MECH 640, MECH 606, MECH 607, MECH 641/EECE 661, EECE 693, EECE 694 (unless the student takes EECE 603, in which case either EECE 694 or EECE 603 counts toward the minor)

List C: BIOL 202, BIOL 223, BIOL 225, BIOL 244, BIOL 263, BIOL 268, PHYL 202, PHYL 246

Course Descriptions

EECE 200 Introduction to Electrical and Computer Engineering 3 cr.
Overview of electrical and computer engineering; engineering as a profession; introduction to the different areas of ECE such as biomedical systems, circuits, communications, computer design, control, distributed systems, electromagnetics, energy, machines, and signal processing; basic computer tools such as SPICE, MATLAB, and LabVIEW; basic laboratory instruments; laboratory experiments and design project.

EECE 210 Electric Circuits 3 cr.
A course on fundamentals of electric circuits; basic elements and laws; techniques of circuit analysis: node voltage, mesh current, Thevenin, Norton, and source transformation; inductors, capacitors, mutual inductance, and transformers; transient response of RC, RL, and RLC circuits; steady state AC circuits; power calculations; circuit simulation using SPICE.

EECE 230 Introduction to Programming 3 cr.
A course on the basic principles of programming and their application to the solution of engineering problems using a high level programming language. This course introduces structured and object-oriented programming, and covers the basic data types, control structures, functions, arrays, pointers, and classes. Weekly laboratory assignments are an integral part of this course.
EECE 290 Analog Signal Processing 3 cr.
A course on Laplace transform and its use in circuit analysis; s-domain representation; network functions; frequency-selective circuits; Bode plots; two-port networks; ideal op-amp; active filters; Fourier series; circuit simulation using SPICE. Prerequisite: EECE 210.

EECE 310 Electronics 3 cr.
A course on semiconductors; PN junctions; diodes and diode circuits; MOS transistor and applications such as amplifier and switch; bipolar junction transistor and applications such as amplifier and switch; and, circuit simulation using SPICE. Prerequisite: EECE 290.

EECE 310L Electric Circuits Laboratory 1 cr.
A laboratory course that covers passive electronic components; laboratory instruments; voltage-divider circuits; sources and Thevenins's theorem; RC lead-lag networks; series resonance; the transformer; op-amp circuits; single-phase rectifier circuits; LEDs; Zener diode regulator; diode clamping and clipping; BJT and MOSFET characteristics. Pre- or corequisite: EECE 310.

EECE 311 Electronic Circuits 3 cr.
A course on MOSFET and BJT amplifiers; low-frequency and high-frequency response of transistor amplifiers; digital CMOS and bipolar logic circuits; transient response and power dissipation; signal generators and waveform-shaping circuits; and, SPICE simulations. Prerequisite: EECE 310.

EECE 320 Digital Systems Design 3 cr.
A course that covers number systems and codes, switching algebra; combinational circuit analysis, synthesis, and practice; minimization methods; sequential logic design principles; latches and flip-flops, clocked synchronous state machines, designing state machines using state tables and state diagrams; and, introduction to the VHDL hardware description language. Prerequisite: EECE 210.

EECE 321 Computer Organization 3 cr.
A course on the organization of modern computer systems; basic hardware and software components of von Neumann computers; machine instruction sets and assembly language programming; fixed- and floating-point computer arithmetic; processor datapath and control unit design; instruction pipelining; the memory system; input/output interfacing techniques; system buses. Prerequisites: EECE 230 and EECE 320.

EECE 321L Computer Organization Laboratory 1 cr.
A laboratory course with experiments in computer organization and interfacing techniques; digital hardware design using CAD tools and FPGAs; program-controlled and interrupt-driven I/O; memory organization; simple peripheral devices and controllers; bus interfaces; microcontroller-based designs. Pre- or corequisite: EECE 321.

EECE 330 Data Structures and Algorithms 3 cr.
This course covers fundamental algorithms and data structures that are used in software applications. Particular emphasis is given to algorithms for sorting, searching, and indexing. Data structures such as linked lists, binary trees, heaps, B-Trees, and graphs are covered along with their associated algorithms. The course also covers basic algorithmic analysis techniques and seeks to promote student programming skills. Prerequisite: EECE 230.
EECE 340
Signals and Systems
3 cr.
A course on signals and systems; linear time-invariant systems; review of Fourier series representation of periodic signals; Fourier transform and its applications; discrete-time Fourier transform; time and frequency characterization of signals and systems; introduction to communication and control systems; review of the Laplace transform and the Z-Transform. **Prerequisite:** EECE 290.

EECE 370
Electric Machines and Power Fundamentals
3 cr.
A course on three-phase circuits and power calculation; magnetic circuits; transformers: single-phase ideal and real transformers, construction, operational characteristics, autotransformers, 3-phase transformers; DC and AC machines: construction and basic concepts; synchronous generators: construction, equivalent circuit, testing and performance characteristics. **Prerequisite:** EECE 210.

EECE 380
Engineering Electromagnetics
3 cr.
This course applies the electromagnetic model consisting of Maxwell's equations to the study of static electric fields in vacuum and dielectrics, conductors, capacitance, the study of magnetic fields in magnetic and non-magnetic media, and inductance. The concepts of electrostatic and magnetic potentials, energy and forces are introduced. The second part of the course emphasizes the study of time-varying fields, plane wave propagation in unbounded media, propagation in lossless media, and wave reflection and transmission at normal incidence. The basic bridge between electric circuits and electromagnetics is done through the study of transmission lines. **Prerequisites:** EECE 210 and MATH 202.

EECE 401
Biomedical Engineering Seminar
1 cr.
Biweekly seminars given by members of the Faculty of Engineering and Architecture or by guest speakers. The seminars cover a range of biomedical engineering topics of theoretical and professional interest. Students are required to submit an assignment based on each seminar, which will be graded. The seminar is required of all students taking the Biomedical Engineering Minor.

EECE 411
Analog Integrated Circuits
3 cr.
A course on the design of analog integrated circuits with an emphasis on MOS circuits; op-amp design; feedback and stability; applications of analog integrated circuits such as filtering and A/D conversion; comparison with bipolar circuits; extensive use of SPICE for circuit simulation. **Prerequisite:** EECE 311.

EECE 412
Digital Integrated Circuits
3 cr.
A course on digital electronic circuits; models, current equations, and parasitics of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout, and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, interconnect. **Prerequisites:** EECE 311 and EECE 320.

EECE 413L
Electronics Laboratory
1 cr.
A laboratory course that focuses on circuit layout and fabrication; amplifier characterization; low-frequency and high-frequency response; active filters; wave generators; communication circuits; low current motor drives. **Prerequisite:** EECE 311.
EECE 421 Computer Architecture 3 cr.
A course on the principles, techniques, and trade-offs used in designing modern processor architectures. Topics include: benchmarking and performance evaluation, long-latency instruction pipelining, hardware and software techniques for exploiting instruction-level parallelism (out-of-order, speculative, and predicated instruction execution; multithreading; loop unrolling, software pipelining, and trace scheduling), high performance memory systems, and multiprocessor systems and programming. Prerequisite: EECE 321.

EECE 430 Software Engineering 3 cr.
A course that teaches students the formal processes employed for carrying out software projects, including the design, development, testing, and deploying of practical software systems. Students are exposed to the realities involved in developing software for clients and the requirements this imposes on quality, timing, and coordination. Students develop hands-on experience with practical tools used in real-life applications. The course requires the completion of a group-based real-life software project. Prerequisite: EECE 330.

EECE 431 Design and Analysis of Algorithms 3 cr.
This course covers techniques for the design and analysis of efficient algorithms. Topics include: sorting algorithms including merge-sort, quick-sort, and counting-sort; median and order statistics algorithms; sorting lower bound; divide-and-conquer design strategy; polynomial and matrix multiplication algorithms; balanced search trees; hash tables; augmenting data structures; number-theoretic algorithms; dynamic programming; greedy algorithms; graph algorithms including graph traversal algorithms and applications, minimum spanning tree, shortest path algorithms; distributed algorithms; introduction to NP-completeness and intractability. Prerequisite: EECE 330.

EECE 432 Operating Systems 3 cr.
A course that covers operating systems principles; processes and threads; concurrency and synchronization; CPU scheduling; virtual memory management; communication in distributed systems, secondary-storage management; file systems; security. Prerequisites: EECE 321 and EECE 330. Students can not receive credit for both EECE 432 and CMPS 272.

EECE 433 Database Systems 3 cr.
A course that covers the nature and purposes of database systems and an introduction to data modeling: entity relationship model, relational model with relational algebra, relational calculus and SQL; integrity constraints; file organization and index files; and normalization. Prerequisite: EECE 330. Students can not receive credit for both EECE 433 and CMPS 277.

EECE 442 Communication Systems 3 cr.
A course that introduces students to the transmission and reception of analog signals; performance of analog communication systems in the presence of noise; analog to digital conversion and pulse coded modulation; transmission and reception of digital signals; performance of digital communication systems in the presence of noise and inter-symbol interference; equalization. Prerequisites: EECE 340 and STAT 230.

EECE 442L Communications Laboratory 1 cr.
A laboratory course with experiments covering the following topics: AM and FM modulation/demodulation, sampling and quantization, digital modulation (PSK, FSK, MSK, GMSK), digital demodulation, and inter-symbol interference. Prerequisite: EECE 442.
EECE 450 Computer Networks 3 cr.
A course that outlines data communications; wide area networks; circuit and packet switching; routing; congestion control; local area networks; communications architecture and protocols; internetworking. **Prerequisites:** EECE 330 and STAT 230.

EECE 451L Internetworking Laboratory 1 cr.
A laboratory course that covers the technologies and protocols of the Internet. The experiments cover the Internet Protocol, Address Resolution Protocol, Internet Control Message Protocol, Transmission Control Protocol, the Domain Name System, routing protocols (RIP, OSPF, BGP), network address translation, dynamic host configuration, network management protocols, and IP multicast. **Prerequisite:** EECE 450.

EECE 460 Control Systems 3 cr.
A course that covers mathematical modeling (transfer functions, state models) of linear continuous and discrete time invariant single input/single output dynamical systems; performance specifications; analysis and design of closed loop analog and digital (computer based) control systems. **Prerequisite:** EECE 340.

EECE 460L Control Systems Laboratory 1 cr.
A course that introduces the analog computer; analysis of linear systems; second order systems; effects of poles and zeros on the transient response; effect of gain on response and stability; compensation implementation. In addition, micro-controllers are introduced and several experiments deploy digital control strategies to control continuous processes. **Pre- or corequisite:** EECE 460.

EECE 461 Instrumentation 1 cr.
A design course for complete instrumentation systems, including measurements, sensors, data acquisition, and component integration. Application areas and course projects include industrial control, laboratory measurements, automation systems, and the like. This course is completed with a set of laboratory experiments. **Prerequisite:** EECE 460.

EECE 470L Electric Machines Laboratory 1 cr.
Transformers: open circuit, short circuit, and load test; unbalanced loading and parallel operation of transformers; speed control and load characteristics of shunt, series and compound dc machines; induction machines: blocked rotor, no-load, and loading tests; operation of single-phase induction motors; operation of a synchronous machine connected to a large external source. **Prerequisite:** EECE 370.

EECE 471 Fundamentals of Power Systems Analysis 3 cr.
Basic concepts and modeling of generation, transmission, and distribution systems; load flow analysis; economic load dispatch problem; symmetrical and asymmetrical short circuit studies; simplified power system stability analysis; introduction to power system operation and control problems. **Prerequisite:** EECE 370.

EECE 471L Power Systems Laboratory 1 cr.
Measurement of characteristic data of a transmission line; voltage drop and losses; steady-state operation of a “generator-infinite bus” system; stability of electric power system; power system software applications. **Prerequisite:** EECE 471.

EECE 473 Power Electronics 3 cr.
A course on diodes; diode circuits and rectifiers; thyristors; controlled rectifiers; power transistors; DC choppers; pulse width modulated inverters; introduction to gate and base drive circuits; switching power supplies. **Prerequisites:** EECE 310 and EECE 370.
EECE 473L **Power Electronics and Drives Laboratory** 1 cr.
Thyristor triggering and operation; line commutated ac to dc controlled rectifiers or converters; inverters; dc to dc switching regulators; variable-frequency and variable voltage induction motor drives; stepper motor drives; torque-speed tests of solid state drives. **Prerequisite:** EECE 473.

EECE 474 **Electric Drives** 3 cr.
A course that covers steady-state analysis of dc and poly-phase induction motors, starting, and control; AC drives: solid-state control, dc link in adjustable speed drives, voltage and frequency controls, braking and plugging; DC drives: rectifier and chopper drives, dynamic and regenerative braking, plugging. Stepper motors: types, operational characteristics, control algorithms, power drive configurations. Special-purpose motors. **Prerequisite:** EECE 370.

EECE 475 **Industrial Electrification** 3 cr.
A course on medium and low voltage installations; lighting; practical applications of electric machines; motor control centers; emergency power supplies; auxiliary systems. **Prerequisite:** EECE 370.

EECE 476 **Power System Protection and Switchgear** 3 cr.
A course on current and voltage transformers and protection; over-voltage protection; relays; circuit breakers and fuses; data transmission; project. **Prerequisite:** EECE 370.

EECE 499 **Undergraduate Research** 3 cr.
Participation, under supervision of a faculty member, in a research project. Before registering, the student must create a proposal regarding the nature of the research, the specific goals of the research, and the desired final report outcome; this proposal must be submitted to and approved by the supervising faculty member and the undergraduate committee before registering. **Prerequisites:** Completion of 65 required credits in the major, and a cumulative average of 85.0 or above.

EECE 500 **Approved Experience** 0 cr.
An eight-week professional training course in electrical and computer engineering.

EECE 501 **Final Year Project** 3 cr.
A supervised project in groups of normally three students aimed at providing practical experience in some aspect of electrical and computer engineering. Students are expected to complete a literature survey, project specification, critical analysis, and to acquire the necessary material needed for their intended end product.

EECE 502 **Final Year Project** 3 cr.
A course that seeks to impart to students the skills to integrate the knowledge gained in different courses by asking them to deliver a product that has passed through the design, analysis, testing, and evaluation stages. This course includes production of a professional report, design process and outcome, implementation and testing, verification and validation, and critical appraisal of the project. **Prerequisite:** EECE 501.

EECE 503 **Special Topics in ECE** 3 cr.

IT Course Descriptions

ITEC 240 **Computers and Communication Systems** 3 cr.
This course gives an encompassing introduction to computer and communication system hardware. Computer hardware topics include microprocessors, memory, disk storage, and input/output devices. Network topics on the other hand include protocols and hardware, in addition to the Internet and the World Wide Web.
ITEC 241 Software Systems 3 cr.
This course covers major aspects of software systems and programming languages with hands-on experience that focuses on developing skills for building applications and web pages. The course teaches students how to program in XHTML, JavaScript, Visual Basic, SQL, and Active Server Pages (ASP). Students are also introduced to IT security. Lab assignments are given to enhance learned concepts.

ITEC 242 Management Information Systems 3 cr.
This course introduces students to the strategic role of information and communication technologies. These include building and using information systems as well as their integration in all aspects of management. The course covers IT need assessment, technology evaluation and selection, and project planning and implementation. Additional topics include advances in IT and issues related to administration, security, risks, and control.

Graduate Programs
The Department of Electrical and Computer Engineering offers the degree of Master of Engineering (ME) in Electrical and Computer Engineering, and the degree of Doctor of Philosophy (PhD) in Electrical and Computer Engineering.

Master of Engineering in Electrical and Computer Engineering
The Department offers the following graduate programs, all leading to the Master of Engineering in Electrical and Computer Engineering (ME in ECE) degree:

• ECE Thesis Program
• ECE Non-Thesis Program
• Information and Communications Technology Program

All programs must satisfy either the thesis program requirements or the non-thesis program requirements. The program is indicated on the student’s transcript.

Requirements
All relevant requirements and regulations of the University and the Faculty of Engineering and Architecture for the master’s degree apply to the ME in ECE programs.

• In order to be eligible for admission, a student must have a bachelor’s degree from an accredited university.

• Students whose undergraduate degree is in an area other than engineering, and students whose undergraduate degree is a three-year degree, are considered prospective graduate students.

• Applicants to the graduate programs must sit for the GRE general test.

• Students applying to the thesis programs are normally interviewed by members of the ECE graduate committee, and are asked to provide a statement of research describing their experience and research interests.
ECE Thesis Program

Thirty (30) credit hours: 24 course credit hours and 6 thesis credit hours

- minimum of 21 credits in graduate courses
- minimum of 18 credits in ECE courses
- minimum of 9 graduate credits in the major area
- minimum of 6 graduate credits in the minor area
- seminar course

ECE Non-Thesis Program

Thirty-three (33) credit hours in graduate courses

- minimum of 12 graduate credits in the major area
- minimum of 6 graduate credits in the minor area
- minimum of 24 credits in ECE courses
- seminar course

Information and Communications Technology Program

The Information and Communications Technology (ICT) Program is consistent with the requirements for the ME in ECE thesis program, and consists of 30 credits distributed as follows:

- 15 credits in core courses
- 9 credits in elective courses
- an internship (no credits) with a minimum duration of 10 weeks and a maximum duration of six months
- 6 credits for the master thesis
- seminar course

The courses are divided into three areas: software systems, telecommunications, and business/management. The 15-credit core courses should satisfy the following conditions:

- 6 credits in software systems selected from a set of core courses
- 6 credits in telecommunications selected from a set of core courses
- 3 credits in business/management selected from a set of core courses

The 9-credit elective courses should satisfy the following conditions:

- one regular 3-credit course from either the software systems elective pool or the telecommunications elective pool
- The remaining 6 credits should include a minimum of one graduate level lab course, one technical special course, and one business/management special course

All elective courses should be taken from the three defined pools of elective courses (software systems pool, telecommunications pool, and business/management pool).
Core Courses

- Software Systems: EECE 625, EECE 630, EECE 635, EECE 654
- Telecommunications: EECE 640, EECE 643, EECE 651, EECE 653
- Business/Management: DCSN 315, INFO 300, INFO 330

Elective Courses

- Business/Management: BUSS 310, DCSN 315, INFO 300, INFO 330, MNGT 306, MNGT 319, MKTG 306, MNGT 348, ENMG 654, ENMG 656, ENMG 657

Master’s Degree—Major and Minor Areas

The major and minor areas for the ME in ECE programs are shown below, with their corresponding courses.

- **Biomedical Engineering**: EECE 601, EECE 602, EECE 603, EECE 604, EECE 605, EECE 693
- **Software Systems and Networks**: EECE 625, EECE 630, EECE 631, EECE 632, EECE 634, EECE 650, EECE 651, EECE 652, EECE 653, EECE 654
- **Control and Intelligent Systems**: EECE 660, EECE 661, EECE 662, EECE 663, EECE 664, EECE 665, EECE 693
- **Communications**: EECE 604, EECE 640, EECE 641, EECE 642, EECE 643, EECE 644, EECE 645, EECE 646, EECE 647, EECE 651
- **Signal and Image Processing**: EECE 603, EECE 622, EECE 644, EECE 663, EECE 691, EECE 693, EECE 694, EECE 695
- **Energy and Power Systems**: EECE 670, EECE 671, EECE 672, EECE 673, EECE 675, EECE 676, EECE 677
- **Applied Electromagnetics and RF Systems**: EECE 611, EECE 613, EECE 643, EECE 680, EECE 681, EECE 682, EECE 683
PhD in Electrical and Computer Engineering

The PhD Program in Electrical and Computer Engineering will be offered pending final approval by the New York State Education Department.

For admission and graduation requirements, refer to the faculty and department webpages.

Courses

EECE 601 Biomedical Engineering I 3 cr.
A course that introduces general instrumentation configuration, living cells, and performance of instrumentation systems; types and characteristics of transducers; sources and characteristics of bioelectric signals and electrodes; cardiovascular system, measurements, and diagnostic equipment; patient care and monitoring. Prerequisite: BIOL 210 or consent of instructor.

EECE 602 Biomedical Engineering II 3 cr.
A course on the respiratory system; non-invasive diagnostic instrumentation; nervous system; bio-telemetry; clinical laboratory; x-ray and radioisotopes; magnetic resonance; electrosurgery; computers in medicine. Prerequisite: EECE 601.

EECE 603 Biomedical Signal and Image Processing 3 cr.
A course that introduces the fundamentals of digital signal processing as implemented in biomedical applications. It provides a concise treatment of the tools utilized to describe deterministic and random signals as the basis of analyzing biological signals: data acquisition; imaging; denoising and filtering; feature extraction; modeling. The course is tightly coupled with a practical component as it looks at and assigns several laboratory projects. Examples include the auditory system, speech generation, electrocardiogram, neuronal circuits, and medical imaging. Students should have reasonable software skills in Matlab. Prerequisites: BIOL 210 and STAT 230, or equivalent.

EECE 604 Communications Engineering for Genetics and Bioinformatics 3 cr.
This course presents current research efforts in the emerging interdisciplinary field of communications engineering for genetics and bioinformatics. It shows how concepts and techniques from the field of Communications Engineering can be applied to central problems from the fields of Genetics and Bioinformatics. As a basic analogy, voice information is digitized, transmitted, and processed in communications, and DNA information is replicated, transmitted, and processed in genetics. The main topics covered include DNA compression, mutual information for functional genomics, channel coding for gene expression, genomic signal processing, and biological computation. Prerequisite: Senior or graduate standing.

EECE 605 Neuroengineering I 3 cr.
A course that focuses on the importance of biological systems from the engineering viewpoint; living cells and mechanisms; introduction to the nervous system; the resting membrane potential; generation and propagation of the action potential; motor systems; Synaptic transmission; control of movement. Prerequisite: BIOL 210 or consent of instructor.
EECE 611 Introduction to Analog VLSI Systems 3 cr.
A course that focuses on basic analog IC building blocks; current mirrors, voltage, current references, and amplifiers; digital to analog converters, analog to digital converters, continuous-time filters, and switch capacitor filters; modulators and multiplexers, oscillators, and phase-locked loops. Prerequisite: EECE 311.

EECE 612 Digital Integrated Circuits 3 cr.
A course on digital electronic circuits; models, current equations, and parasitics of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout, and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, interconnect. Prerequisites: EECE 311 and EECE 320.

EECE 613 RF and Microwave Circuits for Communications 3 cr.
The course focuses on the analysis and design of high-frequency electronic circuits, with emphasis on RF and microwave circuits and components for communication systems. The course covers the basic principles of radio-frequency (RF) and microwave circuits design, as applied to the design of microstrip and coplanar lines, impedance transformers, low-pass and band-pass filters, directional couplers, power dividers, amplifiers, mixers, and diode detectors. It provides understanding of S-parameters and signal-flow graph analysis techniques. The course enables the student to get hands-on experience in RF and microwave circuit design through the use of computer-aided design tools to simulate and analyze high frequency circuits, build them as part of a course project, and perform measurements in the lab using network and spectrum analyzers. Prerequisites: EECE 311, EECE 340, and EECE 380.

EECE 614 Computer-Aided Analysis and Design of VLSI Circuits and Systems 3 cr.
A course on circuit and logic simulation; timing analysis and verification; testing and fault simulation; logic and high-level synthesis; physical design automation. Prerequisite: EECE 311.

EECE 620 Computer Graphics 3 cr.
A course on interactive graphics; graphics hardware; graphical input devices; windowing; clipping; viewports; zooming, geometrical transformations (2D and 3D); data structures; advanced raster display architectures; raster algorithms; special graphics techniques; applications. Prerequisite: Senior or graduate standing.

EECE 621 Advanced Computer Architecture 3 cr.
A course that focuses on the allocation of hardware and software resources in solving large-scale computing problems, with emphasis on the relationships between hardware organization, system programming, and language support in the evolution of advanced computer architectures. Prerequisite: EECE 421.

EECE 622 VLSI for Communications and Signal Processing 3 cr.
This course introduces concepts in the design and implementation of digital signal processing systems using integrated circuits. The main emphasis is on the architectural exploration, design and optimization of signal processing systems for communications. Algorithm, architecture, and circuit design techniques are introduced that enable joint optimization across the algorithmic, architectural, and circuit domains. A key component of the course is a project in which students investigate problems in the design and implementation of low-power and high-performance communication systems. Prerequisite: Senior or graduate standing.
EECE 623 Reconfigurable Computing 3 cr.
A course dealing with the design issues pertaining to the implementation of application specific architectures using the reconfigurable computing paradigm allowing the same circuit to be reused in order to run different applications. Emphasis is on the systematic design of reconfigurable computing platforms that exploit a high degree of parallelism.
Prerequisite: EECE 321 or consent of instructor.

EECE 624 Digital Systems Testing 3 cr.
A course on digital systems testing and testable design; test economics, fault modeling, logic and fault simulation, testability measures, test generation for combinational and sequential circuits, memory test, delay test, scan design, built-in self test, and boundary scan.
Prerequisite: EECE 320.

EECE 625 Embedded Systems Design 3 cr.
A course on embedded hardware and software design. The system design process: requirements analysis, specification, hardware/software co-design, testing; embedded computing platforms: general- and special-purpose processors, hardware accelerators, systems-on-a-chip, intellectual property (IP) core-based design, embedded networks; software design tools and technologies: CAD tools, compilers, and assemblers. Hardware design tools and technologies: hardware-description languages, high-level synthesis tools, ASIC and FPGA design flows; real-time operating systems: multiple tasks and processes, context switching, task scheduling, interprocess communication mechanisms; low-power computing: circuit, architecture, and application techniques; system reliability and fault tolerance.
Prerequisites: EECE 321 and EECE 321L.

EECE 626 Computer System Analysis 3 cr.
A course on the development of analytical models of computer systems and application of such models to performance evaluation. Topics covered include scheduling policies, paging algorithms, multi-programmed resource management, and queuing theory.
Prerequisite: EECE 421.

EECE 630 Distributed and Object Database Systems 3 cr.
A course that covers design techniques used for distributing databases among multiple sites. The fundamental topics include fragmentation, replication, and allocation. The course also discusses the strategies used in executing distributed queries subject to given criteria and the commit protocols for managing transactions in a distributed environment. Other covered topics include parallel database implementations and the design of object database management systems. The course enables students to get hands-on experience in designing distributed database systems using a design project that requires the implementation of low-level functionality associated with the functions of distributed database system.
Prerequisite: EECE 433.

EECE 631 Advanced Topics in Algorithms 3 cr.
A course that covers general principles of algorithm design and analysis; linear programming; randomized algorithms; advanced graph algorithms; NP completeness; introduction to complexity theory; approximation algorithms; number theoretic algorithms; selected topics.
Prerequisite: EECE 431.
EECE 632 Cryptography and Computer Security 3 cr.
Overview of encryption and computer security; classical encryption techniques, block ciphers and the data encryption standard, finite fields, advanced encryption standard, confidentiality using symmetric encryption, public-key cryptography, key management, hash and MAC algorithms, digital signatures; authentication applications, intruders, and malicious software. Prerequisite: Senior or graduate standing.

EECE 634 Optimizing Compilers 3 cr.
Theoretical and practical aspects of building modern optimizing compilers. Topics: intermediate representations, basic blocks and flow graphs, data flow analysis, partial evaluation and redundancy elimination, loop optimizations, register allocation, instruction scheduling, and interprocedural analysis. Students implement significant optimizations within the framework of a modern research compiler. Prerequisites: EECE 330 and EECE 421, or consent of the instructor.

EECE 640 Wireless Communications 3 cr.
A course on wireless channel models; performance of digital modulation schemes in wireless channels; diversity techniques; channel coding and interleaving in fading channels; adaptive equalization in wireless channels; multiple access techniques; fundamentals of cellular communications; current wireless communication systems. Prerequisite: EECE 442.

EECE 641 Information Theory 3 cr.
This course introduces the field of information theory and its application to communications theory, computer science, statistics, and probability theory. Covering all the essential topics in information theory, we introduce the basic quantities of entropy, relative entropy, and mutual information, and show how they arise as natural answers to questions of data compression, channel capacity, rate distortion, and hypothesis testing. Prerequisite: EECE 442.

EECE 642 Introduction to Coding Theory 3 cr.
This course introduces the theory of error-correcting codes. The course focuses on results of asymptotic or algorithmic significance. Topics include: construction and existence results for error-correcting codes; limitations on the combinatorial performance of error-correcting codes; low density parity check codes; algebraic geometric codes; Turbo codes; and decoding algorithms. Prerequisite: Senior or graduate standing.

EECE 643 RF and Microwave Communication Systems 3 cr.
A course that introduces students to hardware components, system parameters, and architectures of RF and microwave wireless systems; focus on the design of a radio system for transmission and reception of information: types of receivers and transmitters, matching techniques, antenna types in wireless systems, RF and microwave radio components, receiver and transmitter RF system parameters, and radio links; basic modulation and demodulation schemes and multiple-access techniques used in present RF systems, including an overview of different RF and microwave point-to-point, mobile, and satellite communications systems. Prerequisites: EECE 311 and EECE 340.

EECE 644 Stochastic Processes, Detection, and Estimation 3 cr.
A course on types of random processes, series representation, and filtering; hypothesis testing and parameter estimation from a probabilistic point of view; extension to detection and estimation of known signals in white and non-white noise; prediction and filtering problems. Prerequisites: STAT 230 and EECE 340.
EECE 645 The UMTS Cellular System 3 cr.
A course on GSM, EDGE, and GPRS; UMTS standardization; multimedia and data services; UMTS transmitter design; UMTS receiver design; power control and soft handover; radio network planning; multiantenna techniques; multiuser detection; packet and Internet access over wireless; overview of CDMA2000. Prerequisite: EECE 442.

EECE 646 Advanced Digital and Data Communications 3 cr.
A course that examines measures of information; source coding; channel coding; channel capacity; soft and hard decision decoding; digital signaling over a channel with intersymbol interference; other topics. Prerequisite: EECE 442.

EECE 647 Queuing Theory 3 cr.
A course that covers Poisson counting and renewal processes; Markov chains and decision theory, branching processes, birth death processes, and semi-Markov processes; simple Markovian queues, networks of queues, general single and multiple-server queues, bounds and approximations. Prerequisite: Senior or graduate standing.

EECE 650 Client-Server Computing 3 cr.
A course that covers internet and intranet technologies; the client-server model of interaction; design and implementation of clients and servers; interactive and concurrent servers; distributed computing; application gateways; design project. Prerequisite: EECE 450.

EECE 651 Internet Engineering 3 cr.
A course that examines major protocols used in Internet engineering: IP, ICMP, TCP, UDP; new technologies introduced on the Internet, such as IP Multicast, Mobile IP, IPv6, VPNs, and quality of service; routing on the Internet; network security and firewall design; overview of the application protocols such as SMTP, HTTP, RTP, and SNMP. Prerequisite: EECE 450.

EECE 652 Web Server Design and Programming 3 cr.
This course concentrates on major technologies used in building Web servers. Alternate versions are to be given each year: the Windows-based IIS Server and the Linux-based Apache server. For IIS, ASP.NET along with C# are used for programming Web servers. For Apache, PHP is the language of choice. The course starts with a fast track on client programming, the HTTP protocol, SQL database servers, and XML programming. A weekly lab, two application projects, and a research project constitute the major requirements of the course. Prerequisite: Senior or graduate standing.

EECE 653 Multimedia and Networking 3 cr.
This course covers topics in multimedia such as system requirements, performance requirements, representation and compression. Multimedia networking is emphasized by discussing multicasting, streaming, multimedia networking protocols and quality of service-based traffic management protocols. Other covered topics include synchronization, VoIP, and Internet2. Multimedia networking applications are designed and implemented as student projects. Prerequisite: EECE 450.

EECE 654 Pervasive Computing Systems and Applications 3 cr.
This course covers the technologies involved in integrating front-end mobile devices into local and global networks. A strong emphasis is placed on the programmability and networking of mobile phones, PDAs, and Pocket PCs. Hands-on experience involves programming in Java2 ME, C/C++ for Palm OS, and .NET Compact Framework for Windows CE. The course provides a general coverage of underlying technologies and standards, including XML, WAP, UMTS, GPRS, Bluetooth, and Jini. Prerequisite: Senior or graduate standing.
EECE 660 System Analysis and Design 3 cr.
A course that outlines state-space models of discrete and continuous, linear and nonlinear systems; controllability; observability; minimality; Eigenvector and transforms analysis of linear time invariant multi-input multi-output systems; pole shifting; computer control; design of controllers and observers. Prerequisite: Senior or graduate standing.

EECE 661 Robotics 3 cr.
A course that examines robot manipulators: kinematics, control, programming, task planning, and effect of load; design of robot controllers: path tracking, force feedback control, real-time computation issues; a set of laboratory experiments and a design project. Prerequisite: EECE 460.

EECE 662 Optimal Control 3 cr.
A course on optimization theory and performance measures; calculus of variations; the maximum principle; dynamic programming; numerical techniques; LQR control systems. Prerequisite: Senior or graduate standing.

EECE 663 System Identification 3 cr.

EECE 664 Fuzzy Sets, Logic and Applications 3 cr.
A course that outlines fuzzy sets and related concepts; logical connectives; mapping of fuzzy sets; extension principle; fuzzy relations and fuzzy set ordering; fuzzy logic inference; applications: fuzzy control, signal processing, pattern recognition, decision-making, and expert systems. Prerequisite: Senior or graduate standing.

EECE 665 Adaptive Control 3 cr.
A course that includes the control of partially known systems; analysis and design of adaptive control systems; self-tuning regulators, model reference adaptive control of uncertain dynamic systems; typical applications. Prerequisite: EECE 460.

EECE 670 Power System Planning 3 cr.
A course that investigates energy and peak load forecasts, weather-sensitive forecasts, generation reliability, load duration curves, loss-of-load expectation, capacity reserve evaluation, generation and transmission expansion, power flow analysis, reliability of bulk supply, and cost-benefit analysis. Prerequisite: EECE 471.

EECE 671 Environmental Aspects of Energy Systems 3 cr.
A course that examines world energy resources and classifications; sources and effects of air pollution; air quality modeling, Gaussian dispersion models for pollution estimation; motor vehicle emissions and noise pollution; environmental impacts of electricity generation, pollution control systems, electromagnetic radiation, production and impacts in high-voltage applications; environmental impact assessment; basic concepts. Prerequisite: Senior or graduate standing.
EECE 672 Energy Planning and Policy 3 cr.
A course that focuses on features of modern energy planning and policy. Topics covered include the interaction among the technological, economic, environmental, and sociopolitical aspects of energy supply and use; electricity, oil, and gas industries, and their market structures; elements of energy planning on the sectoral and national levels; energy decision-making under uncertainties, risk management in energy planning; liberalization of energy markets; case studies. Prerequisite: Senior or graduate standing.

EECE 673 Power Electronics Systems and Applications 3 cr.
A course that reviews converter topologies for AC/DC, DC/AC, and DC/DC; power supply applications; converter applications to motor drives; utility interface of distributed energy systems; static VAR systems; flexible AC transmission; high voltage DC; power quality control; active and passive harmonics compensation. Prerequisite: EECE 473 or EECE 471.

EECE 675 Renewable Energy Systems 3 cr.
A course that covers wind, solar, hydro, biomass, and geothermal resources; resource assessment, electric drive options, control problems, environmental aspects of electricity generation, and stand-alone and utility applications; institutional and policy issues, and integrated energy systems. Prerequisite: Senior or graduate standing.

EECE 676 Computer Analysis of Power Systems 3 cr.
A course on large scale power systems, power system matrices, and programming considerations; advanced power flow studies, voltage, and reactive flow control; fault analysis, transient analysis, and power system stability. Prerequisite: EECE 471.

EECE 677 Electric Power System Operation and Control 3 cr.
A course on short-term load forecasting, generation unit commitment, economic load dispatch, loss formula coefficients, nonlinear programming, optimal power flow, security assessment, security dispatch, spinning reserve evaluation, automatic generation control, reactive power and voltage control, and state estimation. Prerequisite: Senior or graduate standing.

EECE 680 Antenna Theory and Design 3 cr.
Radiation systems, wire antennas, aperture antennas, arrays, input impedance, microstrip antennas, dielectric antennas, antennas in material layers. Prerequisite: Senior or graduate standing.

EECE 681 Advanced Antenna Design 3 cr.
This course provides the students with an understanding of advanced antenna structures and presents an overview of analytical and numerical methods used to analyze and design these antenna structures. This course includes broadband antennas, frequency-independent antennas, aperture antennas, horn antennas, microstrip antennas, and reflector antennas. Students will work on a research paper on a selected antenna design topic. Prerequisite: EECE 680.

EECE 682 Time-Harmonic Electromagnetic Fields 3 cr.
Time-varying and time-harmonic EM fields, electrical properties of matter, wave propagation and polarization, construction of solutions, reflection and transmission, electromagnetic theorems and principles in particular equivalence, rectangular waveguides and cavities, dielectric waveguide, circular waveguides, spherical waveguide, radiation from structures, scattering by wedges, cylinders and spheres; radiation from apertures. Perturbational and variational techniques. Prerequisites: EECE 380.
EECE 683 Method of Moments in Electromagnetics 3 cr.
Introduction to the method of moments. Applications of the method to perfectly conducting
bodies, material bodies, apertures, thin wires, and to microstrip transmission lines.
Development of computer codes solving typical problems in electromagnetics using
the method of moments. Introduction to other numerical methods such as variational methods
and finite element method. Prerequisite: EECE 682.

EECE 691 Digital Signal Processing 3 cr.
Review of signals, systems, and transforms. Design of Digital Filters: FIR and IIR. Sampling
and reconstruction of signals. Multi-rate signal processing with applications. Effects of finite
word length. Discrete random signals and spectral estimation. Introduction to 2D signal and
image processing. Prerequisite: Senior or graduate standing.

EECE 693 Neural Networks 3 cr.
A course on perceptron, madaline, back propagation, and adaptive neural networks;
transformation by layered networks, statistical neurodynamics, associative memory, and
neural learning; applications to functional approximations, signal filtering, and pattern
classification. Prerequisite: Senior or graduate standing.

EECE 694 Digital Image Processing 3 cr.
A course on two-dimensional signals and systems; image formation and perception;
representation, coding, filtering restoration, and enhancements; feature extraction and scene
analysis; introduction to computer vision. Prerequisite: Senior or graduate standing.

EECE 695 Adaptive Filtering 3 cr.
A course that examines the fundamentals of adaptive filter analysis and design, with emphasis
on applications in linear and decision-feedback equalization, beam forming, channel estimation
and tracking, noise and echo cancellation, source separation, and blind equalization;
stochastic gradient algorithms (LMS-type) and recursive least-squares algorithms (RLS-type).
Prerequisite: Senior or graduate standing.

Special Courses and Thesis

EECE 796 Special Project
An assigned project, of not more than 3-credit hours, supervised by a faculty member.

EECE 797 Seminar
EECE 798 Special Topics
EECE 799 Thesis
Every semester.