Department of Physics

Chairperson: Klushin, Leonid I.
Professors: Bitar, Khalil M.; *Chamseddine, Ali H.; El Eid, Mounib F.; Klushin, Leonid I.; Sabra, Wafic A.
Associate Professors: *Isber, Samih T.; *Tabbal, Malek D.; Touma, Jihad R.
Assistant Professor: Polyakov, Dimitri A.
Visiting Assistant Professor: Ibrahim, Tarek B.
Research Associate: Christidis, Theodore C.
Lecturers: *Bodakian, Berjouhi H.; *Mouawad, Nelly C.; *Roumieh, Mohammad A.
Instructors: *Haddad, Jessy S.; *Itani, Hybat M.
Assistant Instructors: *Ashkar, Rana A.; *Atallah, Nada K.; *Majdalani, Elissar S.; Mehio, Kawthar R.

Graduate Program

The department provides facilities for graduate work leading to the MS degree. The research activities of the department include material science, condensed matter physics, molecular physics, paramagnetic resonance, non-linear dynamics, astrophysics, high energy physics, superstring theory, and quantum gravity.

The MS program requires the completion of 21 credits of courses and a thesis. The courses consist of four core courses: PHYS 301, PHYS 302, PHYS 303, and PHYS 305, and nine credits of physics graduate electives. After completion of the four core courses, the student must pass a qualifying exam. The student must then select a thesis adviser who will present the thesis proposal to the physics faculty for approval. The MS degree is granted after the student defends his/her thesis successfully.

MS in Physics

PHYS 301 Classical Mechanics

3.0; 3 cr.

D’Alembert’s principle, variational principles and Euler Lagrange’s equations, rigid bodies and small oscillations, Hamilton’s mechanics, canonical transformations and Hamilton-Jacobi theory, stability, integrable systems, and chaotic motion. Annually.

PHYS 302 Statistical Mechanics

3.0; 3 cr.

Boltzmann distribution, density matrix, statistical ensembles, Fermi-Dirac and Bose-Einstein statistics and applications, phase transitions, mean-field theory, and applications. Annually.

PHYS 303 Electromagnetic Theory

3.0; 3 cr.

Boundary-value problems in electrostatics, multipoles, dielectrics, magnetostatics, time-varying fields and Maxwell’s equations, and electromagnetic waves. Annually.

P Part time

*On leave for one semester
Department of Physics

• A bachelor’s (BS) degree in Physics or related fields from an institution recognized by AUB
• Three letters of recommendation
• A score on the general part of the Graduate Record Examination (GRE), and the subject part in physics. This exam is also required by both BS and MS holders. A score on a previously taken GRE will remain valid for a period of three years
• A score on the Test of English as a Foreign Language (TOEFL) or English Entrance Examination (EEE) that meets the university requirements (250 for computer-based TOEFL, 600 for paper-based TOEFL and 550 for EEE)
• A statement of purpose
• A recommendation for admission by the AUB Department of Physics. A departmental committee may require an interview with the applicant before giving a recommendation

Governance

The PhD program is proposed as a full time 5-year program, with a maximum of 7 years permitted for its completion. The governance of the program commences with the application process.

Upon admission into the program, a graduate student is assigned an academic adviser who evaluates their academic background, designs a curriculum to meet their research interests and career goals, and advises if undergraduate courses are needed to rectify deficiencies. All of the duties of the academic adviser will be transferred to the dissertation adviser, once chosen by the student and approved by the department. The dissertation adviser must be chosen within 3 semesters from the admission to the program.

Supervision of Research Work

A doctoral dissertation committee provides general guidance and advises the student on the research project. The committee is formed at least eight months prior to the dissertation proposal defense. The committee consists of four members of professorial rank, with at least one external member from outside AUB, chaired by the student’s thesis adviser.

The doctoral dissertation committee evaluates the thesis proposal and the thesis research and dissertation.

Course Work

The PhD program requires the completion of at least 27 credits of courses. These include 15 credits in the core program (5 courses), and at least 12 credits beyond the core program, out of which one course must be in the concentration area, and the others can be taken as electives.

Doctor of Philosophy in Theoretical Physics

AUB will offer this program leading to the PhD degree, pending final approval by the New York State Education Department. Applicants are urged to check the status of the program on the department’s web site and the Registrar’s web site: http://staff.aub.edu.lb/~webregist/

Mission Statement

The PhD program in the Department of Physics is intended to produce competent independent researchers who are able to make original contributions to physical sciences. The program prepares students for careers in research, teaching, or industry and thus provides qualified scientists for Lebanon and the region. It serves the AUB mission of promoting research and participating in the advancement of knowledge.

Admission

Admission to the PhD program is on competitive basis. To be eligible for admission, applicants must have a good academic record with a minimum cumulative average of 85 or equivalent, and demonstrate exceptional motivation and ability to pursue research in physics. The following items are required for an application:

PHYS 305 Quantum Mechanics 3.0; 3 cr.
Hilbert space formulation of quantum mechanics, theory of angular momentum, Euler rotation, addition of angular momenta, symmetries and conservation laws, time reversal, parity, discrete symmetry, path integral formulation of quantum mechanics, approximation methods, identical particles, elementary scattering theory, introduction to relativistic quantum mechanics. Annually.

PHYS 309/310 Special Topics 3.0; 3 cr. (each)
May be repeated for credit. Annually.

PHYS 330 Principles of Environmental Physics 3.0; 3 cr.
Scope of environmental physics, review of gas laws, transport laws, radiation environment, microclimatology of radiation, momentum transfer, heat transfer, mass transfer, steady state heat balance, crop meteorology, energy for human use, and environmental spectroscopy. Not open to physics graduate students. Prerequisites: PHYS 204 and 205 or equivalent and some knowledge of calculus. Annually.

PHYS 391/392 Graduate Tutorial 1–3 cr. (each)
Physics 391 is usually given in the fall semester while PHYS 392 is given in the spring semester. For more than one student or if the same student is taking two tutorials at the same time the letters A, B, C will be attached to distinguish these tutorials. May be repeated for credit.

PHYS 399 MS Thesis 9 cr.
Comprehensive Exam and Proposal Defense

Upon completion of a minimum of 15 credits of graduate course work including the four core courses: PHYS 301, 302, 303, and 305 with an average of 85 or above in the core courses, the student may sit for a written comprehensive examination to determine whether he/she has achieved the background necessary to continue in the PhD program.

After choosing a dissertation adviser, the student must formulate, submit, and defend a doctoral research proposal to demonstrate a capacity to pursue and complete a doctoral research project.

Candidacy

To achieve PhD candidacy, the student must

- complete the four graduate courses: PHYS 301, 302, 303, and 305 with an average of 85 or above
- pass the written PhD qualifying exam upon completion of a minimum of 15 credits of graduate course work including the four above-mentioned courses
- complete the course program with a minimum of 30 credits of graduate course work after the BS degree, with an average of 85 or above
- submit and defend a dissertation proposal not later than 5 semesters after admission to the graduate program

PhD Dissertation and Thesis Defense

After qualifying as a PhD candidate, the student will focus on the doctoral research. PhD dissertation is based on independent original research. The doctoral research, once completed, will be presented publicly, and defended in front of the dissertation committee. The dissertation committee consists of four members, all of professorial rank, with at least one member from outside AUB.

Residency Requirement

Students admitted to the PhD program must

- remain in residence for one full academic year (2 consecutive semesters) as full-time students, preferably teaching in the department
- register for a minimum of 6 semesters of full tuition
- complete all requirements for the PhD degree within a maximum time limit of 7 years. Extension requires approval of the Board of Graduate Studies

Graduation Requirements

A student is granted the PhD degree upon approval of his/her PhD dissertation by the dissertation committee in a public session. In addition to the general graduation guidelines specified by the University, the Physics Department also requires that part of the PhD dissertation work be published or accepted for publication in a refereed journal by the time of graduation.

Timetable

A student is expected to proceed along the following time table:

- Finish the graduate course work (a minimum of 30 credits after the BS) within 6 semesters of starting the graduate study program
- Pass the qualifying exam upon completion of 15 credits, within 3 semesters of starting the graduate study program
- Choose a dissertation adviser within 3 semesters of starting the graduate study program
- Defend the PhD dissertation proposal within 5 semesters and advance to candidacy within 6 semesters of starting the graduate study program
- Complete his/her research work by submitting his/her dissertation to the dissertation committee and defending it in a public session. The total length of the PhD should not exceed 7 years.

Financial Support

Graduate assistantships covering tuition fees and stipends are awarded to PhD students as they are admitted into the program. Stipends are sufficient to cover living expenses in Beirut. PhD students in their fourth and fifth years are eligible for grants to participate in international conferences. In return, students help in teaching undergraduate labs and recitations of introductory courses. Their duties also include help in proctoring and correcting exams.

Graduate Course Program

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 301</td>
<td>Classical Mechanics</td>
<td>3.0; 3 cr.</td>
</tr>
<tr>
<td></td>
<td>D’Alembert’s principle, variational principles and Euler Lagrange’s equations, rigid bodies and small oscillations, Hamilton’s mechanics, canonical transformations and Hamilton–Jacobi theory, stability, integrable systems and chaotic motion.</td>
<td></td>
</tr>
<tr>
<td>PHYS 302</td>
<td>Statistical Mechanics</td>
<td>3.0; 3 cr.</td>
</tr>
<tr>
<td></td>
<td>Statistical ensembles, Boltzmann distribution, density matrix, Fermi-Dirac and Bose-Einstein statistics and applications, phase transitions, mean-field theory and applications.</td>
<td></td>
</tr>
</tbody>
</table>
PHYS 303 Electromagnetic Theory 3.0; 3 cr.
Boundary-value problems in electrostatics, multipoles, dielectrics, magnetostatics, time-varying fields and Maxwell's equations, electromagnetic waves.

PHYS 305 Quantum Mechanics 3.0; 3 cr.
Hilbert space formulation of quantum mechanics, theory of angular momentum, Euler rotation, addition of angular momenta, symmetries and conservation laws: time reversal, parity, discrete symmetry, path-integral formulation of quantum mechanics, approximation methods, identical particles, elementary scattering theory.

PHYS 306 Introduction to Quantum Field Theory 3.0; 3 cr.
Unifying quantum theory and relativity, Relativistic quantum mechanics: Klein-Gordon equation, scalar field, second quantization, Dirac's equation and Dirac's field. Interaction Fields and Feynman Diagrams, Quantization of the electromagnetic field. Prerequisite: PHYS 305.

PHYS 307 Mathematical Methods of Physics 3.0; 3 cr.
Complex Analysis: contour integration, conformal representation, Tensor analysis, Partial differential equations: heat equation, hypergeometric functions.

PHYS 311 Astrophysics I 3.0; 3 cr.

PHYS 312 Astrophysics II 3.0; 3 cr.

PHYS 313 Differential Geometry and General Relativity 3.0; 3 cr.

PHYS 314 Non-equilibrium Statistical Mechanics 3.0; 3 cr.

PHYS 315 Particle Cosmology 3.0; 3 cr.

PHYS 316 Physics of Soft Matter 3.0; 3 cr.

PHYS 317 Group Theory and Symmetry in Physics 3.0; 3 cr.

PHYS 318 Standard Model of Particle Physics 3.0; 3 cr.

PHYS 319 String Theory 3.0; 3 cr.

PHYS 400 PhD Dissertation