Department of Electrical and Computer Engineering

Chairperson: Kabalan, Karim
Professors: Al-Alaoui, Mohamad Adnan; Artail, Hassan; Chaaban, Farid; Chedid, Riad; Diab, Hassan; El-Hajj, Ali; Hajj, Ibrahim; Kabalan, Karim; Karaki, Sami; Kayssi, Ayman; Saade, Jean; Sabah, Nassir
Associate Professors: Abou-Faycal, Ibrahim; Akkary, Haitham; Bazzi, Louay; Chehab, Ali; Dawy, Zaher; Elhajj Imad; Jabr, Rabih; Karameh, Fadi; Mansour, Mohamed; Masri, Wassim
Assistant Professors: Awad, Mariette; Hajj, Hazem; Kanj, Rouwaida; Zaraket, Fadi
Adjunct Professor: Khoury, Shahwan
Senior Lecturers: Chahine, Hazem; Hamandi, Lama; Huijer, Ernst; Nasser, Youssef
Lecturers: Droubi, Ghassan; Mohtar, Taan; Moukallid, Ali
Instructors: Hijase, Basma; Kanafani, Zaher; Marmar, Ali; Rishani, Nadeen; Salim, Bassel

Graduate Programs

The Department of Electrical and Computer Engineering offers the degree of Master of Engineering (ME) in Electrical and Computer Engineering, and the degree of Doctor of Philosophy (PhD) in Electrical and Computer Engineering.

Master of Engineering in Electrical and Computer Engineering

The department offers the following graduate programs, all leading to the Master of Engineering in Electrical and Computer Engineering (ME in ECE) degree:

- ECE Thesis Program
- ECE Non-thesis Program
- Information and Communications Technology Program (EICT)

All programs must satisfy either the thesis program requirements or the non-thesis program requirements. The program is indicated on the student’s transcript.

Requirements

All relevant requirements and regulations of the University and the Faculty of Engineering and Architecture for the master’s degree apply to the ME in ECE programs.
• In order to be eligible for admission, a student must have a bachelor’s degree from an accredited university.

• Students, whose undergraduate degree is in an area other than engineering and students whose undergraduate degree is a three-year degree, are considered prospective graduate students. The supplementary courses must be completed within four consecutive semesters.

• Applicants to the graduate programs must sit for the GRE general test (see page 37).

• Students applying to the thesis programs are normally interviewed by members of the ECE Graduate Committee, and are asked to provide a statement of research describing their experience and research interests.

ECE Thesis Program Requirements

Thirty (30) credit hours: 24 course credit hours and 6 thesis credit hours:
• a minimum of 21 credits in graduate courses
• a minimum of 18 credits in ECE courses
• a minimum of 9 graduate credits in the major area, at least 6 of which are in the core
• a minimum of 6 graduate credits in the minor area, at least 3 of which are in the core
• 6 credits for master’s thesis
• the seminar course

ECE Non-Thesis Program Requirements

Thirty-three (33) credit hours in graduate courses:
• a minimum of 12 graduate credits in the major area, at least 6 of which are in the core
• a minimum of 6 graduate credits in the minor area, at least 3 of which are in the core
• a minimum of 24 credits in ECE courses
• the seminar course

Information and Communications Technology Program

The Information and Communications Technology (EICT) Program is consistent with the requirements for the ME in ECE thesis program, and consists of 30 credits distributed as follows:
• 15 credits in core courses
• 9 credits in elective courses
• an internship (no credits) with a minimum duration of 10 weeks and a maximum duration of six months
• 6 credits for the master’s thesis
• the seminar course

The courses are divided into three areas: software systems, telecommunications, and business/management. The 15-credit core courses should satisfy the following conditions:
• 6 credits in software systems selected from a set of core courses
• 6 credits in telecommunications selected from a set of core courses
• 3 credits in business/management selected from a set of core courses
The 9-credits in elective courses should satisfy the following conditions:

- one regular 3-credit course from either the software systems elective pool or the telecommunications elective pool
- one regular 3-credit course from the business/management elective pool
- the remaining 3 credits consist of one graduate level lab course and two technical special courses

All elective courses should be taken from the three defined pools of elective courses (software systems pool, telecommunications pool, and business/management pool).

Core Courses

- **Software Systems:** EECE 630, EECE 633, EECE 652, and EECE 696
- **Telecommunications:** EECE 640, EECE 643, EECE 651, EECE 653, EECE 655, and EECE 656
- **Business/Management:** DCSN 330, INFO 300, INFO 310, INFO 315, INFO 320, and INFO 330

Elective Courses

- **Software Systems:** EECE 623, EECE 630, EECE 631, EECE 632, EECE 633, EECE 634, EECE 636, EECE 637, EECE 638, EECE 639, EECE 652, and EECE 696
- **Telecommunications:** EECE 640, EECE 641, EECE 642, EECE 643, EECE 644, EECE 645, EECE 646, EECE 647, EECE 651, EECE 653, EECE 655, EECE 656, EECE 680, and EECE 681
- **Business/Management:** DCSN 330, INFO 300, INFO 310, INFO 315, INFO 320, MKTG 306, ENMG 654, ENMG 656, ENMG 657
- **Lab courses:** EECE 640L, EECE 651L, EECE 655L, EECE 691L, EECE 694L

Major or Minor Areas

The major and minor areas for the ME and PhD in ECE programs are shown below, with their corresponding courses.

1. **Applied Electromagnetics and RF Systems Area**

<table>
<thead>
<tr>
<th>Core Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 613</td>
<td>Radio Frequency (RF) Circuits Design</td>
</tr>
<tr>
<td>EECE 680</td>
<td>Antenna Theory and Design</td>
</tr>
<tr>
<td>EECE 682</td>
<td>Time-Harmonic Electromagnetic Fields</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 643</td>
<td>RF System Engineering for Wireless Communications</td>
</tr>
<tr>
<td>EECE 681</td>
<td>Advanced Antenna Design</td>
</tr>
<tr>
<td>EECE 683</td>
<td>Numerical Methods in Electromagnetics</td>
</tr>
</tbody>
</table>
2. Biomedical Engineering Area

Core Graduate Courses
- EECE 601 Biomedical Engineering I
- EECE 602 Biomedical Engineering II
- EECE 603 Biomedical Signal and Image Processing

Elective Graduate Courses
- EECE 605 Neuromuscular Engineering
- EECE 661 Robotics
- EECE 667 Pattern Recognition
- EECE 693 Neural Networks

3. Communications Area

Core Graduate Courses
- EECE 640 Wireless Communications
- EECE 641 Information Theory
- EECE 646 Advanced Digital and Data Communications

Elective Graduate Courses
- EECE 604 Communications Engineering for Genetics and Bioinformatics
- EECE 642 Introduction to Coding Theory
- EECE 643 RF System Engineering for Wireless Communications
- EECE 644 Stochastic Processes, Detection, and Estimation
- EECE 645 Wireless Cellular Technologies
- EECE 691 Digital Signal Processing
- EECE 695 Adaptive Filtering

4. Computer Architecture and VLSI Circuits Area

Core Graduate Courses
- EECE 611 Introduction to Analog VLSI Systems
- EECE 612 Digital Integrated Circuits
- EECE 616 Advanced Digital Integrated Circuits
- EECE 621 Advanced Computer Architecture
- EECE 623 Reconfigurable Computing

Elective Graduate Courses
- EECE 613 Radio Frequency (RF) Circuits Design
- EECE 614 Computer-Aided Analysis and design of VLSI Circuits and Systems
- EECE 615 Computer Methods for Circuit and System Analysis
- EECE 617 Reliability and Statistical Design
- EECE 622 VLSI for Communications and Signal Processing
- EECE 624 Digital Systems Testing
- EECE 625 Embedded Systems Design
5. Control Systems Area

<table>
<thead>
<tr>
<th>Core Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 660</td>
<td>System Analysis and Design</td>
</tr>
<tr>
<td>EECE 661</td>
<td>Robotics</td>
</tr>
<tr>
<td>EECE 663</td>
<td>System Identification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 662</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>EECE 664</td>
<td>Fuzzy Sets, Logic and Applications.</td>
</tr>
<tr>
<td>EECE 665</td>
<td>Adaptive Control</td>
</tr>
<tr>
<td>EECE 667</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>EECE 693</td>
<td>Neural Networks</td>
</tr>
</tbody>
</table>

6. Energy and Power Systems Area

<table>
<thead>
<tr>
<th>Core Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 670</td>
<td>Power System Planning</td>
</tr>
<tr>
<td>EECE 675</td>
<td>Renewable Energy Systems</td>
</tr>
<tr>
<td>EECE 678</td>
<td>Advanced Power System Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 671</td>
<td>Environmental Aspects of Energy Systems</td>
</tr>
<tr>
<td>EECE 672</td>
<td>Energy Policy and Planning</td>
</tr>
<tr>
<td>EECE 673</td>
<td>Power Electronics Systems and Applications</td>
</tr>
<tr>
<td>EECE 677</td>
<td>Electric Power Systems Control and Stability</td>
</tr>
<tr>
<td>EECE 679</td>
<td>Energy Efficiency in the Power Sector</td>
</tr>
<tr>
<td>EECE 798A</td>
<td>Special Topics in High Voltage Transmission Systems</td>
</tr>
<tr>
<td>EECE 798B</td>
<td>Special Topics in Generation Operation and Control</td>
</tr>
</tbody>
</table>

7. Machine Intelligence Area

<table>
<thead>
<tr>
<th>Core Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 633</td>
<td>Data Mining</td>
</tr>
<tr>
<td>EECE 664</td>
<td>Fuzzy Sets, Logic and Applications</td>
</tr>
<tr>
<td>EECE 667</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>EECE 693</td>
<td>Neural Networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Graduate Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 631</td>
<td>Advanced Topics in Algorithms</td>
</tr>
<tr>
<td>EECE 639</td>
<td>Advanced Data Mining</td>
</tr>
<tr>
<td>EECE 661</td>
<td>Robotics</td>
</tr>
<tr>
<td>EECE 662</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>EECE 663</td>
<td>System Identification</td>
</tr>
<tr>
<td>EECE 665</td>
<td>Adaptive Control</td>
</tr>
<tr>
<td>EECE 668</td>
<td>Game Theory and Decision Making</td>
</tr>
<tr>
<td>EECE 694</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>EECE 695</td>
<td>Adaptive Filtering</td>
</tr>
</tbody>
</table>
8. Networks and Security Area

Core Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 632</td>
<td>Cryptography and Computer Security</td>
</tr>
<tr>
<td>EECE 651</td>
<td>Internet Engineering</td>
</tr>
<tr>
<td>EECE 653</td>
<td>Multimedia and Networking</td>
</tr>
<tr>
<td>EECE 655</td>
<td>Internet Security</td>
</tr>
<tr>
<td>EECE 656</td>
<td>Mobile Ad hoc and Sensor Networks</td>
</tr>
<tr>
<td>EECE 657</td>
<td>Wireless Network Security</td>
</tr>
</tbody>
</table>

Elective Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 630</td>
<td>Distributed and Object Databases</td>
</tr>
<tr>
<td>EECE 640</td>
<td>Wireless Communications</td>
</tr>
<tr>
<td>EECE 647</td>
<td>Queuing Theory</td>
</tr>
<tr>
<td>EECE 652</td>
<td>Web Server Design and Programming</td>
</tr>
<tr>
<td>EECE 654</td>
<td>Pervasive Computing</td>
</tr>
</tbody>
</table>

9. Signal and Image Processing Area

Core Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 603</td>
<td>Biomedical Signal and Image Processing</td>
</tr>
<tr>
<td>EECE 691</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>EECE 694</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>EECE 695</td>
<td>Adaptive Filtering</td>
</tr>
</tbody>
</table>

Elective Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 644</td>
<td>Stochastic Process, Detection and Estimation</td>
</tr>
<tr>
<td>EECE 663</td>
<td>System Identification</td>
</tr>
<tr>
<td>EECE 667</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>EECE 693</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>EECE 696</td>
<td>Applied Parallel Programming</td>
</tr>
</tbody>
</table>

10. Software Engineering Area

Core Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 631</td>
<td>Advanced Topics in Algorithms</td>
</tr>
<tr>
<td>EECE 636</td>
<td>Analysis and Verification of Software</td>
</tr>
<tr>
<td>EECE 637</td>
<td>Advanced Programming Practice</td>
</tr>
<tr>
<td>EECE 638</td>
<td>Software Testing</td>
</tr>
<tr>
<td>EECE 731</td>
<td>Advanced Topics in Complexity Theory</td>
</tr>
</tbody>
</table>

Elective Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECE 630</td>
<td>Distributed and Object Database Systems</td>
</tr>
<tr>
<td>EECE 632</td>
<td>Cryptography and Computer Security</td>
</tr>
<tr>
<td>EECE 634</td>
<td>Introduction to Computational Arabic</td>
</tr>
<tr>
<td>EECE 652</td>
<td>Web Server Design and Programming</td>
</tr>
<tr>
<td>EECE 654</td>
<td>Pervasive Computing Systems and Applications</td>
</tr>
<tr>
<td>EECE 696</td>
<td>Applied Parallel Programming</td>
</tr>
<tr>
<td>EECE 732</td>
<td>Pseudo Randomness</td>
</tr>
</tbody>
</table>
PhD in Electrical and Computer Engineering

Mission
The mission of the doctoral program is to provide high quality education in electrical and computer engineering which prepares students for employment and leadership roles in academic, industrial, or research positions.

Objectives
The objectives of the program are to:

- provide the student with the research opportunities to acquire a depth of knowledge in one specialization area of electrical and computer engineering, and familiarity with allied areas
- provide opportunities for the doctoral student to develop competence in performing independent research, communicating effectively, and learning independently
- advance the state of electrical and computer engineering research at AUB, in Lebanon, and the region
- and advance the state of the art in electrical and computer engineering.

Program Outcomes
Graduates of the program are expected to have:

- a breadth of knowledge in electrical and computer engineering, and a depth of knowledge in their specific area of research
- an ability to identify and define research problems
- experience in performing research and communicating the results effectively
- experience in doing independent academic work
- a published contribution to the existing knowledge in electrical and computer engineering.

Applicants who have an excellent record of academic achievement, and a potential for creative and independent work, may be admitted into one of the following categories:

- Admissions for Students Holding a Master’s Degree
- Admissions for Students Holding a Bachelor’s Degree

The minimum admission requirements for the two categories are described below:

Admission Requirements for Students Holding a Master’s Degree
Applicants to the PhD program must hold a master’s degree in electrical and computer engineering or in a related discipline from AUB or another recognized institution of higher education, with a minimum cumulative average of 85.0 over 100 or its equivalent. Admission is determined by evaluating the following:

- Transcripts of academic record from the institution(s) of higher education attended by the applicant
- Graduate Record Examination (GRE) general test scores
- A written statement of purpose
- Three letters of recommendations
• A portfolio that includes a resume and samples of work
• An interview, conducted either in person, by phone, or over the Internet
• All applicants must also satisfy the University requirements for admission to PhD programs.

Program Requirements for Students Holding a Master’s Degree

The completion of at least forty-eight (48) credits of graduate study consisting of combined course work and research beyond the master’s degree is required for the PhD degree in Electrical and Computer Engineering. A minimum of eighteen (18) credits of course work and a minimum of eighteen credits (18) of research and thesis work are required.

The basic program of study for the PhD degree is built around one major area and a minimum of one minor area. Students take courses to satisfy the major and minor area requirements and to acquire the knowledge needed for the required written and oral examinations.

• The major can be in one area or a combination of two ECE areas.
• Nine credits of core courses must be taken in the major area.
• Students must take at least six graduate courses, including courses prior to admission to the PhD program, in their PhD major area.
• Students must also take at least three graduate courses in their PhD minor area, including courses taken prior to admission to the PhD program.
• The minor courses may be taken in one of the ECE areas.
• The minor courses, based on the recommendation of the advisor and approval of the ECE Graduate Committee (EGC) can be from an area outside the ECE department, or a combination of courses taken in the department and outside the department.

Each student must maintain an 85.0/100 cumulative average in order to remain in good standing. The cumulative average is calculated for courses taken beyond the master’s degree. A student will be placed on probation if s/he fails a course (below 70), or her/his cumulative average falls below 85.0. A student has one semester to raise his/her cumulative average to 85.0 or better and has to repeat failed courses as soon as they are offered. Failure to do so will result in academic dismissal. A student cannot earn the PhD with a cumulative average below 85.0.

PhD Qualifying Exam for Students Holding a Master’s Degree

All PhD students are required to pass the qualifying exam. The PhD qualifying exam is two parts. Qualifying Exam Part I is a written comprehensive exam administered by the department/program. The Qualifying Exam Part II is an oral thesis proposal defense exam administered by the thesis committee.

Qualifying Exam Part I: Comprehensive Exam for Students Holding a Master’s Degree

After taking at least fifteen credits of course work and mastering the knowledge defined in the PhD major area, students take the Qualifying Exam Part I: Comprehensive Exam. The exam is given twice a year, at the end of the fall and spring semesters. Students are informed beforehand of the subjects that will be covered in the examination. Students who do not pass may repeat
the exam only once, during the following semester. If the student does not pass the exam after his/her second attempt, the student will be asked to discontinue his/her PhD studies.

Students sit for two exams that together constitute the comprehensive examination: one in the major area, and one in the minor area. These two exams are taken separately at different times, but during the same examination period. The major area exam consists of eight questions, out of which five questions should be answered in four hours. The minor area exam consists of six questions, out of which three questions should be answered in two and a half hours. The area exams are prepared by the corresponding area faculty committee, and are designed to evaluate the student's understanding of the fundamentals in the area. Passing the comprehensive exam requires an average of no less than 80/100 with no less than 80/100 in the major area and no less than 70/100 in the minor area.

Admission to Candidacy for Students Holding a Master’s Degree

Students must be admitted to candidacy at least two semesters before obtaining the PhD degree.

For admission to candidacy, students are expected to have:

- submitted a program approved by the thesis committee, the EGC, the FEA Graduate Student Council (GSC), and the Graduate Council (GC)
- passed the Qualifying Exam Part I and II
- completed at least 12 credits of graduate courses beyond the master's degree
- attained a cumulative average of at least 85.0 in all courses taken beyond the master's degree
- maintained good academic standing.

Residence Requirements for Students Holding a Master’s Degree

A student must register for at least four semesters beyond the completion of the master's degree. Requirements for the PhD degree must be completed within a period of five years after starting graduate work beyond the master's degree. Extension beyond the five-year limit requires the approval of the EGC, the FEA GSC, and the GC.

Admission Requirements for Students Holding a Bachelor’s Degree

- A bachelor degree with a minimum major and cumulative average of 85 over 100 or its equivalent
- Graduate Record Examination (GRE) general test scores
- Three recommendation letters (one from the FYP supervisor)
- An applicant’s written statement of purpose that shows the research potential in the proposed area of study
- Two-three page research proposal
- Performance of the candidate in the EECE 499 research-based course if taken
- An interview, conducted either in person, by phone, or over the Internet with the ECE Graduate Committee (EGC).
Course Requirements for Students Holding a Bachelor’s Degree

The completion of at least seventy-eight (78) credits of graduate study consisting of combined course work and research beyond the Bachelor’s degree is required for the PhD Accelerated track in Electrical and Computer Engineering. A minimum of 36 credit hours must be in approved graduate level course work and a minimum of 30 credit hours of thesis work. In addition, normally a maximum of six credit hours out of the 36 credits of course work may be tutorial courses.

The basic program of study for the PhD accelerated track is built around: one major area and a minimum of one minor area. Students take courses to satisfy the major and minor area requirements and to acquire the knowledge needed for the Qualifying Exam Part I and Qualifying Exam Part II.

- The major area can be in one or a combination of two of the ECE areas.
- Nine credits of core courses must be taken in the major area.
- Students must take at least six graduate courses, in their PhD major area.
- Students must also take at least three graduate courses in their PhD minor area. The minor courses may be taken in one of the ECE areas.
- The minor courses, based on the recommendation of the advisor and approval of the ECE Graduate Committee (EGC) can be from an area outside the ECE department, or a combination of courses taken in the department and outside the department.

PhD Qualifying Exam for Students Holding a Bachelor’s Degree

All PhD students are required to pass the qualifying exam. The PhD qualifying exam is two parts. Qualifying Exam Part I is a written comprehensive exam administered by the department/program. The Qualifying Exam Part II is an oral thesis proposal defense exam administered by the thesis committee.

Qualifying Exam Part I: Comprehensive Exam for Students Holding a Bachelor’s Degree

Comprehensive examinations are written exams taken after completing a minimum of 30 credits of course requirements for the accelerated track. Timing of the examination is set by the department/program no later than the sixth regular semester of the PhD student’s enrolment.

Residence Requirements for Students Holding a Bachelor’s Degree

The student must register for at least eight semesters beyond the completion of the bachelor degree. Requirements for the PhD degree in the accelerated track must be completed within a period of six years after starting graduate work beyond the bachelor’s degree. Extension beyond the six-year limit requires the approval of the EGC, FEA GSC, and GC.

Students deemed by the department, within one to two years after admission into the accelerated track, as not qualified to complete a PhD degree, may be granted a master’s degree in the area after completing the equivalence of a non-thesis master’s. Every effort will be made
to screen students carefully to assure their potential and aptitude as researchers prior to acceptance. This could be accomplished by having selected students participate in ongoing research projects while they are registered undergraduates.

Admission to Candidacy for Students Holding a Bachelor’s Degree

Students must be admitted to candidacy at least two semesters before obtaining the PhD degree.

For admission to candidacy, students are expected to have:
- submitted a program approved by the thesis committee, the EGC, the FEA GSC, and the GC
- passed the oral qualifying examination
- completed at least 30 credits of graduate courses beyond the bachelor’s degree
- attained a cumulative average of at least 85.0 in all courses taken beyond the bachelor’s degree
- maintained good academic standing

PhD Thesis Committee

In accordance to the Lebanese Ministry of Higher Education, the thesis committee should be composed of at least five faculty members:
- Chair of the committee, advisor, and at least one member from the student’s department/program
- Two members must be from outside the university
- At least four committee members must be from the student’s major area
- All members must hold doctoral degrees
- The advisor and at least three of the members must be of professorial rank
- The chair of the thesis committee must be a full professor and cannot be the advisor

Members of the committee are recommended by the student's thesis adviser and approved by Graduate Studies Committee of the ECE department, the FEA Graduate Studies Committee, and the Graduate Council.

The committee approves the thesis topic, research plan, conducts the oral Qualifying Exam (Part II), and conducts the thesis defense. The thesis proposal and the selection of the committee should be approved at least two semesters before the student defends his/her thesis.

Any changes in the committee, including the thesis advisor, are possible with the approval of the EGC, FEA GSC, and GC.

Within two semesters after passing the comprehensive examination, the student must take an oral qualifying examination, conducted by his/her thesis committee. The defense of the PhD thesis proposal is considered a part of the oral qualifying examination. In addition to reviewing the prospectus of the thesis, the nature and the content of the examination are related to the student's field of research.
PhD Thesis
The student must submit a thesis based on the results of original, independent research. The PhD thesis is expected to make a significant contribution in electrical and computer engineering. Upon completion of the thesis and after its approval by the thesis advisor, the thesis must be defended orally.

PhD Thesis Defense
The thesis defense is open to the public. Please refer to the table on page 60 for deadlines. “Pass” or “Fail” is reported for the combined thesis and defense. If “Fail” is reported, the student may resubmit the thesis and defend it after a period of at least four months. Failure on the second attempt results in the discontinuation of graduate work.

A student must be registered for the Thesis Defense in the session in which they expect to graduate.

Seminar Requirement
A student must register for EECE 797: Seminar, as long as s/he is in the program.

Program Completion Requirements
To earn the PhD degree in electrical and computer engineering, the student must complete the following requirements:
• Have at least one journal paper, based on the PhD thesis, accepted in a leading international journal in his or her field of specialty that requires at least two reviews. Additionally at least two refereed conference papers, based on the thesis, must have appeared in conference proceedings.
• Have a cumulative average, beyond the master’s degree, of 85.0 or above, and be in good academic standing.
• Satisfy the course and research credit requirements.
• Pass the comprehensive and oral qualifying examinations.
• Complete and successfully defend a PhD thesis.
• Satisfy the residence requirement and all other pertinent AUB regulations.

PhD Major or Minor Areas
The PhD major or minor areas of study with their corresponding courses are the same as those listed for the Master’s, see page 282.
Course Descriptions

EECE 601 Biomedical Engineering I 3 cr.
This course includes an introduction to: general instrumentation configuration, performance of instrumentation systems; types and characteristics of transducers; sources and characteristics of bioelectric signals; types and characteristics of electrodes; temperature regulation and measurement; cardiovascular system, measurements, and diagnostic equipment; blood instruments; patient care and monitoring; and electrical safety of medical equipment. Prerequisites: EECE 210 and BIOL 210, or consent of instructor.

EECE 602 Biomedical Engineering II 3 cr.
This course covers the respiratory system and measurements; nervous system and measurements; sensory and behavior measurements; biotelemetry; instrumentation for the clinical laboratory; x-rays and radioisotope instrumentation; magnetic resonance; and special surgical techniques. Prerequisite: EECE 601, or consent of instructor.

EECE 603 Biomedical Signal and Image Processing 3 cr.
A course that introduces the fundamentals of digital signal processing as implemented in biomedical applications. It provides a concise treatment of the tools utilized to describe deterministic and random signals as the basis of analyzing biological signals: data acquisition; imaging; denoising and filtering; feature extraction; modeling. The course is tightly coupled with a practical component as it looks at and assigns several laboratory projects. Examples include the auditory system, speech generation, electrocardiogram, neuronal circuits, and medical imaging. Students should have reasonable software skills in Matlab. Prerequisites: STAT 230 and EECE 340, or equivalent, or consent of instructor.

EECE 604 Communications Engineering for Genetics and Bioinformatics 3 cr.
This course presents current research efforts in the emerging interdisciplinary field of communications engineering for genetics and bioinformatics. It shows how concepts and techniques from the field of communications engineering can be applied to central problems from the fields of genetics and bioinformatics. As a basic analogy, voice information is digitized, transmitted, and processed in communications, and DNA information is replicated, transmitted, and processed in genetics. The main topics covered include DNA compression, mutual information for functional genomics, channel coding for gene expression, genomic signal processing, and biological computation.

EECE 605 Neuromuscular Engineering 3 cr.
EECE 611 Introduction to Analog VLSI Systems 3 cr.
This course covers an introduction to digital electronic circuits; models, current equations and parasitic of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, and interconnect. Prerequisites: EECE 310 and EECE 320, or consent of instructor.

EECE 612 Digital Integrated Circuits 3 cr.
A course on digital electronic circuits; models, current equations, and parasitics of CMOS transistors for digital design; study of CMOS inverter and logic gates, including analysis, design, simulation, layout, and verification; advanced circuit styles; sequential circuits; advanced topics: semiconductor memories, power grid, clocking strategies, datapath building blocks, deep-submicron design issues, interconnect. Prerequisites: EECE 311 and EECE 320, or consent of instructor.

EECE 613 Radio Frequency (RF) Circuits Design 3 cr.
The course focuses on the analysis and design of Radio Frequency (RF) circuits and components. The course covers RF design techniques using transmission lines, strip lines, microstrip and coplanar lines. It covers the design of passive and active RF devices, including impedance transformers, amplifiers, oscillators and mixers. It provides understanding of S-parameters and signal-flow graph analysis techniques. The course enables the student to get hands-on experience in RF circuit design through the use of computer-aided design tools to simulate and analyze radio frequency circuits, build them as part of a course project, and perform measurements in the lab using network and spectrum analyzers. Prerequisites: EECE 311, EECE 340, and EECE 380, or consent of instructor.

EECE 614 Computer-Aided Analysis and Design of VLSI Circuits and Systems 3 cr.
A course on circuit and logic simulation; timing analysis and verification; testing and fault simulation; logic and high-level synthesis; physical design automation. Prerequisite: EECE 311, or consent of instructor.

EECE 615 Computer Methods for Circuit and System Analysis 3 cr.
This course covers numerical methods and techniques for computer simulation of linear and nonlinear circuits and systems. This includes formulation methods, solution of linear equations and systems (DC analysis or static analysis), time-domain solution (transient analysis), solution of large systems, and sensitivity analysis. Application areas include simulation of electronic integrated circuits, power systems, electro-mechanical systems, mechatronics, and systems that can be modeled by sets of algebraic-differential equations. Prerequisites: EECE 210, MATH 202, and MATH 218 or MATH 219, or consent of instructor.

EECE 616 Advanced Digital Integrated Circuits 3 cr.
A graduate level course on advanced digital integrated circuits. The following topics are covered: impact of physical technology on architecture; technology issues: CMOS scaling and issues in deep submicron regimes, process variations; device and interconnect modeling; optimization for speed; high-speed logic families; low-power design: leakage reduction techniques, voltage scaling; power distribution; clocking strategies; timing concepts; memory design: clocked storage elements, SRAM, DRAM, flash memory; and high-speed arithmetic circuits. Prerequisite: EECE 412 or EECE 612, or consent of instructor.
EECE 617 Reliability and Statistical Design 3cr.
This course explores major aspects of statistical design methodologies with particular emphasis on electrical and computer engineering problems. It covers various topics in the domain of reliability and yield estimation, and encompasses both geometrical-based approximation methods as well as sampling-based methods. The course focuses on variance reduction methods for purposes of extreme statistics and rare fail event estimation. Case studies will be provided to analyze the manufacturability and robustness challenges of advanced circuits and the implications on low power design. Students will learn about the impact of new physical effects on the traditional circuit design solutions and methods, and the rising need for statistical design methodologies. Other applications in electrical and computer engineering will also be covered. Prerequisite: Senior standing of consent of the instructor.

EECE 621 Advanced Computer Architecture 3 cr.
This course focuses on modern advancements in parallel computer architecture, with emphasis on advanced instruction level parallelism (ILP) and multiprocessor architectures. Topics include: advanced branch prediction, data speculation, computation reuse, memory dependence prediction, trace caches, dynamic optimizations, checkpoint architectures, latency-tolerant processors, simultaneous multithreading, speculative multithreading, virtual machines, message passing multiprocessors, UMA, NUMA and COMA shared-memory multiprocessors, single-chip multiprocessors, wormhole routing techniques, cache coherence, memory consistency models, high performance synchronization methods, speculative lock elision and transactional memory. A key component of the course is a research project in which students use architecture performance simulator to investigate novel architecture techniques. Prerequisite: EECE 421, or consent of instructor.

EECE 622 VLSI for Communications and Signal Processing 3 cr.
This course introduces concepts in the design and implementation of digital signal processing systems using integrated circuits. The main emphasis is on the architectural exploration, design and optimization of signal processing systems for communications. Algorithm, architecture, and circuit design techniques are introduced that enable joint optimization across the algorithmic, architectural, and circuit domains. A key component of the course is a project in which students investigate problems in the design and implementation of low-power and high-performance communication systems.

EECE 623 Reconfigurable Computing 3 cr.
A course dealing with the design issues pertaining to the implementation of application specific architectures using the reconfigurable computing paradigm allowing the same circuit to be reused in order to run different applications. Emphasis is on the systematic design of reconfigurable computing platforms that exploit a high degree of parallelism. Prerequisite: EECE 321, or consent of instructor.

EECE 624 Digital Systems Testing 3 cr.
This course covers an overview of digital systems testing and testable design; test economics, fault modeling, logic and fault simulation, testability measures, test generation for combinational circuits, memory test, delay test, IDDQ test, scan design, and boundary scan. Prerequisite: EECE 320, or consent of instructor.
EECE 625 Embedded Systems Design 3 cr.

A course on embedded hardware and software design; the system design process: requirements analysis, specification, hardware/software co-design, testing; embedded computing platforms: general- and special-purpose processors, hardware accelerators, systems-on-a-chip, intellectual property (IP) core-based design, embedded networks; software design tools and technologies: CAD tools, compilers, and assemblers; hardware design tools and technologies: hardware-description languages, high-level synthesis tools, ASIC and FPGA design flows; real-time operating systems: multiple tasks and processes, context switching, task scheduling, interprocess communication mechanisms; low-power computing: circuit, architecture, and application techniques; system reliability and fault tolerance. **Prerequisites:** EECE 321 and EECE 321L, or consent of instructor.

EECE 630 Distributed and Object Database Systems 3 cr.

A course that covers design techniques used for distributing databases among multiple sites. The fundamental topics include fragmentation, replication, and allocation. The course also discusses the strategies used in executing distributed queries subject to given criteria and the commit protocols for managing transactions in a distributed environment. Other topics covered include parallel database implementations and the design of object database management systems. The course enables students to get hands-on experience in designing distributed database systems using a design project that requires the implementation of low-level functionality associated with the functions of distributed database system. **Prerequisite:** EECE 433, or consent of instructor.

EECE 631 Advanced Topics in Algorithms 3 cr.

This is a second course on the general principles of algorithm design and analysis. The course is a continuation of EECE 431. Topics include: computability theory; complexity theory: time complexity, P versus NP, circuit complexity, and space complexity; randomized algorithms; linear programming; approximation algorithms; and selected topics. **Prerequisite:** EECE 431, or consent of instructor.

EECE 632 Cryptography and Computer Security 3 cr.

This course includes an overview of encryption and computer security; classical encryption techniques, block ciphers and the data encryption standard, finite fields; advanced encryption standard confidentiality using symmetric encryption, public-key cryptography, key management, hash and MAC algorithms, digital signatures, authentication applications, email security, and Web security. **Prerequisite:** Senior standing, or consent of instructor.

EECE 633 Data Mining 3 cr.

This course is an introduction to data mining. Data mining refers to knowledge discovery from huge amounts of data to find non-trivial conclusions. Topics will range from statistics to machine learning to database, with a focus on analysis of large data sets. The course will target at least one new data mining problem involving real data, for which the students will have to find a solution. **Prerequisites:** EECE 230, EECE 330 and EECE 433, or consent of the instructor.
EECE 634 Introduction to Computational Arabic 3 c.
This course will focus on knowledge necessary to develop software applications and systems that deals with Arabic data and trends to Arabic users. The course will discuss computational challenges specific to the Arabic language including representation, display, rendering, processing, directionality, structure, interface, and recognition. The course will also discuss multilingual texts where Arabic takes part. We will visit several text processing techniques and algorithms such as encoding, matching, tokenization, search, indexing, and pattern matching and introduce the necessary changes to accommodate the Arabic language. The last part of the course will discuss the state of the art in automating Arabic language processing, understanding, and recognition. Prerequisite: EECE 330 or consent of the instructor.

EECE 636 Logic Verification and Synthesis 3 cr.
This course covers the basic concepts needed to guarantee the correctness of logic systems whether software programs or hardware designs; the basic representations of propositional logic, first order logic, and variations of them. The course discusses how expressive (amenable to express the intent of designers) and how realizable (amenable to automated implementation techniques into circuits) the different logics are. In the course students learn practical tools that take logic descriptions of systems, prove their correctness, either fully or partially, and if possible synthesize or suggest correct circuit implementations. Prerequisite: EECE 431 or consent of instructor.

EECE 637 Advanced Programming Practice 3 cr.
This course is an advanced course on programming practices with a focus on verification. The course introduces programming tools and techniques that make individual engineers more effective and productive and help them develop quality code. Teams will work in Agile and eXtreme programming environments with a focus on design by contract. They will use formal specifications, design patterns and aspect oriented programming. Projects will use tools for code control, building, configuration, language recognition, dynamic documentation, fast prototyping, refinement, coverage, automated and manual debugging, and dynamic and static verification. Prerequisite: EECE 330, or consent of instructor.

EECE 638 Software Testing 3 cr.
The course focuses on concepts, techniques and tools for testing software. It provides practical knowledge of a variety of ways to test software and an understanding of some of the tradeoffs between testing techniques. The topics include: software testing at the unit, module, and system levels; functional and structural testing; regression testing; mutation testing; test suite minimization and prioritization; automatic test case generation.

EECE 639 Advanced Data Mining 3 cr.
A course that covers advanced topics in data mining and recent progress in this field. Discussions will include which techniques fit best for complex applications in data mining. Mining complex data will include general text mining, Arabic text mining, social network analysis, spatial data mining, mining of the World Wide Web, stream data, time-series data, and sequence data. We will also discuss recent application sectors and trends in data mining such as for the telecommunication, biological, and financial sectors. Prerequisites: EECE 330; and one of the following EECE 633, EECE 667, or EECE 693, or consent of instructor.
EECE 640 Wireless Communications 3 cr.
A course that covers the fundamentals of wireless communications with emphasis on wireless channel modeling; digital modulation in wireless channels; diversity techniques; channel coding and interleaving in fading channels; adaptive equalization; multiple access techniques; the cellular concept; overview of current wireless communications systems. Prerequisite: EECE 442, or consent of instructor.

EECE 640L Wireless Communications Laboratory 1 cr.
A laboratory course that covers the following topics: basics of radio network planning and optimization, radio network planning for the GSM cellular system, radio network planning for the UMTS cellular system, GSM-UMTS co-existence and co-citing, radio network planning for the WiMAX broadband system, indoor GSM drive testing measurements and analysis, outdoor GSM drive testing measurements and analysis, UMTS drive testing measurements and analysis, and measurement-based wireless channel modeling. Prerequisite: EECE 640, or consent of instructor.

EECE 641 Information Theory 3 cr.
In this course students study “data transmission” through introducing the field of information theory. The theory is introduced in a gradual fashion and students study its applications to communications theory, computer science, statistics and probability theory. Covering all the essential topics in information theory, students are introduced to the basic quantities of entropy, relative entropy, and mutual information to show how they arise as natural answers to questions of data compression, channel capacity, rate distortion and large deviation theory. Prerequisite: STAT 230 or EECE 442, or consent of instructor.

EECE 642 Introduction to Coding Theory 3 cr.
This course introduces the theory of error-correcting codes with a focus on the asymptotic, algorithmic, and algebraic aspects. Topics include: background material from combinatorics and algebra; Shannon’s coding theorem; linear codes; coding bounds; classical algebraic codes: Hamming and Hadamard codes, Reed-Solomon codes and Justesen codes, and decoding algorithms; codes from graphs: low density parity check codes, expander codes, explicit constructions, and decoding algorithms; and an introduction to Turbo codes. Prerequisite: Senior standing, or consent of instructor.

EECE 643 RF System Engineering for Wireless Communications 3 cr.
This course introduces students to system blocks, system parameters, and architectures of RF systems for wireless communications. It focuses on the design of a radio system for transmission and reception of voice and data information: receivers and transmitters system topologies, key system blocks in a wireless system, determination of system block parameters from radio requirements and system analysis, tradeoffs between various blocks in a radio system, and frequency planning. It discusses how modulation and demodulation schemes and multiple-access techniques used in present wireless applications influence RF systems requirements. The last part of the course focuses the link budget analysis of RF radio links. Prerequisites: EECE 311, EECE 380, and EECE 442, or consent of instructor.

EECE 644 Stochastic Processes, Detection, and Estimation 3 cr.
This is a graduate-level introduction to the fundamentals of detection and estimation theory involving signal and system models in which there is some inherent randomness. The concepts that we develop are extraordinarily rich, interesting, and powerful, and form the basis for an enormous range of algorithms used in diverse applications. The material in this course constitutes a common foundation for work in the statistical signal processing, communication, and control areas. Prerequisites: STAT 230 and EECE 340, or consent of instructor.
EECE 645 Wireless Cellular Technologies 3 cr.
A course on the evolution of cellular technologies with focus on 2G GSM technology, 3G
UMTS/HSPA technology, 4G LTE technology, and beyond. Topics include: cellular network
fundamentals; standardization and services; transmitter and receiver link level designs; access
and core network architectures; physical channels and signaling procedures; link adaptation
and radio resource management; scheduling and multiuser diversity; capacity/coverage
tradeoffs and radio network planning; capacity/coverage enhancement techniques; MIMO
techniques; emerging topics. Prerequisite: EECE 640, or consent of instructor.

EECE 646 Advanced Digital and Data Communications 3 cr.
A course that addresses digital communication principles and techniques aimed at achieving
improved reliability. The course examines information measures; such as entropy and mutual
information for discrete and waveform channels, source coding, channel capacity and coding
theorem, linear block and cyclic codes, hard and soft decision decoding, spread spectrum
modulation.

EECE 647 Queuing Theory 3 cr.
A course that covers Poisson counting and renewal processes; Markov chains and decision
theory, branching processes, birth death processes, and semi-Markov processes; simple
Markovian queues, networks of queues, general single and multiple-server queues, bounds
and approximations. Prerequisite: Senior standing, or consent of instructor.

EECE 651 Internet Engineering 3 cr.
A course that examines major protocols used in internet engineering: IP, ICMP, TCP, UDP; new
technologies introduced on the Internet, such as IP Multicast, Mobile IP, IPv6, VPNs, and quality
of service; routing on the internet; network security and firewall design; and an overview of the
application protocols such as SMTP, HTTP, RTP, and SNMP. Prerequisite: EECE 350 or EECE 450,
or consent of instructor.

EECE 651L Internetworking Laboratory 1 cr.
This laboratory course covers the technologies and protocols of the internet. The experiments
cover the internet protocol (IP), address resolution protocol (ARP), internet control message
protocol (ICMP), user datagram protocol (UDP) and transmission control protocol (TCP), the
domain name system (DNS), routing protocols (RIP, OSPF, BGP), network address translation
(NAT), dynamic host configuration (DHCP), network management protocols (SNMP), and IP
multicast. Prerequisite: EECE 350 or EECE 450, or consent of instructor.

EECE 652 Web Server Design and Programming 3 cr.
This course concentrates on major technologies used in building Web servers. Alternate
versions are to be given each year: the Windows-based IIS Server and the Linux-based Apache
server. For IIS, ASP.NET along with C# are used for programming Web servers. For Apache, PHP
is the language of choice. The course starts with a fast track on client programming, the HTTP
protocol, SQL database servers, and XML programming. A weekly lab, two application projects,
and a research project constitute the major requirements of the course. Prerequisite: Senior
standing, or consent of instructor.

EECE 653 Multimedia and Networking 3 cr.
This course covers topics in multimedia such as system requirements, performance
requirements, representation and compression. Multimedia networking is emphasized by
discussing multicasting, streaming, multimedia networking protocols and quality of service-
based traffic management protocols. Other topics covered include synchronization, VoIP, and
Internet2. Multimedia networking applications are designed and implemented as student
projects. Prerequisite: EECE 350 or EECE 450, or consent of instructor.
EECE 654 Pervasive Computing Systems and Applications 3 cr.
This course covers the technologies involved in integrating front-end mobile devices into local and global networks. An emphasis is placed on the underlying technologies and standards applied when building pervasive solutions. The course has a strong programming component in that it dedicates a significant portion of the time covering the development of mobile applications for three platforms: Windows CE for Pocket PCs, Palm OS for Palm PDAs, and Java 2 Micro Edition (J2ME) for wireless phones that run the Symbian OS. To emphasize this last component, code demonstrations will be held in class, and students will be required to complete three projects targeting the three platforms, designed to cover the different aspects of mobile applications (user interface, local database implementations, and networking). Prerequisite: EECE 430, or consent of instructor.

EECE 655 Internet Security 3 cr.
The course covers topics in internet security. The course discusses security threats, vulnerabilities of protocols and the different types of attacks. Preventive and defensive mechanisms are covered; such as: e-mail security, web security, IP security, network management security, wireless security, intrusion detection techniques, firewalls, VPNs and tracing the source of attacks. Student projects will be composed of implementation, simulation and research components. Prerequisite: EECE 350 or EECE 450, or consent of instructor.

EECE 655L Network and Computer Security Laboratory 1 cr.
A laboratory that addresses advanced network and computer security topics. Experiments include the execution of attacks, the setup of intrusion detection and prevention, securing computers and wired and wireless networks, and digital forensics. Prerequisite: EECE 350 or EECE 450, or consent of instructor.

EECE 656 Mobile Ad hoc and Sensor Networks 3 cr.
This course covers all aspects of ad hoc and sensor networking, from design through performance issues to application requirements. The course starts with the design issues and challenges that are associated with implementations of ad hoc and sensor network applications. This includes dealing with mobility, disconnections, and awareness of battery power consumption. The course then provides a detailed treatment of proactive, reactive, and hybrid routing protocols, in addition to the various clustering approaches. Next, it covers the IEEE 802.11 Wireless LAN and Bluetooth standards and discusses their characteristics and operations. The course also discusses research topics that involve collaboration among mobile devices, service discovery, and data caching. Through a project, the course gives students hands-on experience in designing a mobile ad hoc network using available Pocket PCs and simulation tools. Prerequisite: EECE 350 or EECE 450, or consent of instructor.

EECE 657 Wireless Security 3 cr.
A course that covers wireless network security; security challenges in wireless networks; security problems facing existing and upcoming wireless networks; security in naming, addressing, neighbor discovery, and routing; and trust and privacy. Prerequisites: EECE 350 or EECE 450 and EECE 632, or consent of instructor.

EECE 660/MECH 654 System Analysis and Design 3 cr.
A course that outlines state-space models of discrete and continuous, linear and nonlinear systems; controllability; observability; minimality; Eigenvector and transforms analysis of linear time invariant multi-input multi-output systems; pole shifting; computer control; design of controllers and observers. Prerequisite: Senior or graduate standing, or consent of instructor.
EECE 661 / Robotics 3 cr.
MECH 641
Robotic manipulators classification and work envelope. Robot kinematics, dynamics and forces. Joints trajectory planning for end effector desired tracking and constrained motion. Control of robots using linear, non-linear, and adaptive controllers. Prerequisite: EECE 460 or MECH 435, or consent of instructor.

EECE 662 / Optimal Control 3 cr.
MECH 655
A course on optimization theory and performance measures, calculus of variations, the maximum principle, dynamic programming, numerical techniques, LQR control systems. Prerequisite: Senior or graduate standing, or consent of instructor.

EECE 663 / System Identification 3 cr.
MECH 656
This course introduces the fundamentals of system identification as the basic mathematical tools to fit models into empirical input-output data. While rooted in control theory, applications extend to general time-series modeling and forecasting, such as stock prices, biological data and others. Topics covered include nonparametric identification methods: time and frequency response analysis; parametric identification methods: prediction error methods, least squares, linear unbiased estimation and maximum likelihood; Convergence, consistency and asymptotic distribution of estimates; properties and practical modeling issues: bias distribution, experiment design and model validation. Prerequisite: Senior or graduate standing, or consent of instructor.

EECE 664 / Fuzzy Sets, Logic and Applications 3 cr.
A course that outlines fuzzy sets and related concepts; logical connectives; mapping of fuzzy sets; extension principle; fuzzy relations and fuzzy set ordering; fuzzy logic inference; applications: fuzzy control, signal processing, pattern recognition, decision-making, and expert systems. Prerequisite: Senior standing, or consent of instructor.

EECE 665 / Adaptive Control 3 cr.
A course that includes the control of partially known systems; analysis and design of adaptive control systems; self-tuning regulators; model reference adaptive control of uncertain dynamic systems; typical applications. Prerequisite: EECE 460, or consent of instructor.

EECE 667 / Pattern Recognition 3 cr.
The course provides an overview of the theory, principles and algorithms used in machine learning to construct high performance information processing systems that learn from experience. The course discusses main and modern concepts for model selection and parameter estimation in recognition, decision making and statistical learning problems. Special emphasis will be given to regression, classification, regularization, feature selection and density estimation in supervised mode of learning. Students will be assigned typical machine learning problems to investigate as projects. Prerequisite: Senior standing, or consent of instructor.
EECE 668 Game Theory and Decision Making 3 cr.
Game theory provides a set of tools, approaches, and perspectives on decision making to mimic the human elements of decision making that is best described by strategy, coercion and cooperation. This course offers an introduction to fundamentals of game theory and decision making with a special emphasis on the foundations of the mathematical background. Topics covered include: static, evolutionary, supermodular, repeated, cooperative, network, potential and congestion games as well as bargaining and uncertainty in games. Students will be assigned real-world examples of game theory and strategic decision making to investigate as projects. Prerequisite: Senior standing or consent of instructor.

EECE 669/ MECH 648 Nonlinear Systems: Analysis, Stability and Control 3 cr.
A course that presents a comprehensive exposition of the theory of nonlinear dynamical systems and its control with particular emphasis on techniques applicable to mechanical systems. The course will be punctuated by a rich set of mechanical system examples, ranging from violin string vibration to jet engines, from heart beats to vehicle control, and from population growth to nonlinear flight control. Prerequisite: MECH 435 or EECE 460.

EECE 670 Power System Planning 3 cr.
The course investigates electric energy and peak demand forecasts using weather sensitive, time curve, autoregressive and causal models; generation reliability evaluation, loss of energy expectation, energy limited units, probabilistic production costing, generating capacity expansion analysis, and maintenance scheduling; operational planning, unit commitment, hydrothermal coordination; power system security classification, contingency analysis, external equivalents, optimal power flow; planning in a competitive electric power environment. Prerequisite: EECE 471, or consent of instructor.

EECE 671 Environmental Aspects of Energy Systems 3 cr.
A course that examines world energy resources and classifications; sources and effects of air pollution; air quality modeling, Gaussian dispersion models for pollution estimation; motor vehicle emissions and noise pollution; environmental impacts of electricity generation, pollution control systems, electromagnetic radiation, production and impacts in high-voltage applications; environmental impact assessment; basic concepts.

EECE 672 Energy Planning and Policy 3 cr.
This is a course that focuses on features of modern energy planning and policy. Topics covered include the interaction among the technological, economic, environmental, and sociopolitical aspects of energy supply and use; electricity, oil, and gas industries, and their market structures; elements of energy planning on the sector and national levels; energy decision-making under conditions of uncertainty, risk management in energy planning; liberalization of energy markets; case studies. Prerequisite: Senior standing, or consent of instructor.

EECE 673 Power Electronics Systems and Applications 3 cr.
A course that reviews converter topologies for AC/DC, DC/AC, and DC/DC; power supply applications; converter applications to motor drives; utility interface of distributed energy systems; static VAR systems; flexible AC transmission; high voltage DC; power quality control; active and passive harmonics compensation. Prerequisite: EECE 473 or EECE 471, or consent of instructor.
EECE 675 Renewable Energy Systems 3 cr.
A course that covers the principles of renewable energy, solar radiation, solar water heating, building and other thermal applications, photovoltaic generation, wind power, fuel cells and the hydrogen cycle, biomass, and institutional and economic factors.

EECE 676 Computer Analysis of Power Systems 3 cr.
A course on synchronous machine modeling and simulation, response to small disturbances, and voltage instability. Topics include Park’s transformation, flux linkage, voltage, and state-space equations, subtransient and transient parameters, simplified models of the synchronous machine, treatment of saturation, system reference frame, small-signal stability, power system stabilizers, and bifurcation analysis. Prerequisite: EECE 678, or consent of instructor.

EECE 677 Electric Power System Stability and Control 3 cr.
A course on synchronous machine modeling and simulation, response to small disturbances, and voltage instability. Topics include Park’s transformation, flux linkage, voltage, and state-space equations, subtransient and transient parameters, simplified models of the synchronous machine, treatment of saturation, system reference frame, small-signal stability, power system stabilizers, and bifurcation analysis. Prerequisite: EECE 678, or consent of instructor.

EECE 678 Advanced Power System Analysis 3 cr.
A course on optimal dispatch of generation, symmetrical components and unbalanced faults, transient stability, control of generation, state estimation in power systems, and power system simulation. Prerequisite: EECE 471, or consent of instructor.

EECE 679 Energy Efficiency in the Power Sector 3 cr.
Topics covered in the course include: utility companies and energy supply, energy sustainability, cogeneration systems: combined heat and power (CHP) and combined cycle gas turbines (CCGT), reciprocating engines, distributed generation, demand side management, energy audit: types and data analysis, monitoring and targeting of energy, energy-efficient rotating machines, design and performance optimization; and case studies. Prerequisite: EECE 370 or consent of instructor.

EECE 680 Antenna Theory and Design 3 cr.
This course provides the students with an understanding of the basic principles of antenna analysis and design; an overview of the fundamental characteristics and parameters of antennas; an overview of analytical and numerical methods used to analyze and design antennas with application to some basic antenna structures such as linear antennas, loop antennas, and antenna arrays. Prerequisite: EECE 380, or consent of instructor.

EECE 681 Advanced Antenna Design 3 cr.
This course provides the students with an understanding of advanced antenna structures and presents an overview of analytical and numerical methods used to analyze and design these antenna structures. This course includes broadband antennas, frequency-independent antennas, aperture antennas, horn antennas, microstrip antennas, and reflector antennas. Students will work on a research paper on a selected antenna design topic. Prerequisite: EECE 680, or consent of instructor.
EECE 682 Time-Harmonic Electromagnetic Fields 3 cr.
A course on time-varying and time-harmonic EM fields; electrical properties of matter; wave propagation and polarization; construction of solutions; reflection and transmission; electromagnetic theorems and principles in particular equivalence; rectangular waveguides and cavities; dielectric waveguide, circular waveguides, spherical waveguide; radiation from structures; scattering by wedges, cylinders and spheres; radiation from apertures, and perturbational and variational techniques. Prerequisite: EECE 380, or consent of instructor.

EECE 683 Numerical Methods in Electromagnetics 3 cr.
This course examines the principles and applications of numerical techniques for solving practical electromagnetics problems. It covers the moment methods, finite difference methods, finite element methods, and hybrid methods. The course also investigates the application of the finite-volume control method in electromagnetics. Prerequisite: EECE 682, or consent of instructor.

EECE 691 Digital Signal Processing 3 cr.
Course topics include a review of signals, systems, and transforms; design of digital filters: FIR and IIR; sampling and reconstruction of signals; multi-rate signal processing with applications; effects of finite word length; discrete random signals and spectral estimation; and an introduction to 2D signal and image processing. Prerequisite: Senior standing, or consent of instructor.

EECE 691L Digital Signal Processing Lab 1 cr.
This graduate lab is comprised of a set of lab experiments in MATLAB, C and Assembly covering a series of real-time signal processing topics. The developed laboratory material is intended to complement the digital signal processing course (EECE 691). Upon completion of the lab, the student will have acquired the required knowledge and skills to develop real-time DSP systems. Prerequisite: EECE 691 Digital Signal Processing (may be waived upon approval of course instructor).

EECE 692/MECH 642 Computer Vision 3 cr.
An introductory course on the problems and solutions of modern computer vision. Topics covered include image acquisition, sampling and quantization; image segmentation; geometric framework for vision: single view and two-views; camera calibration; stereopsis; motion and optical flow; recognition; pose estimation in perspective images. Prerequisites: MATH 202 and EECE 230.

EECE 693 Neural Networks 3 cr.
The course provides a comprehensive foundation to artificial neural networks and machine learning with applications to pattern recognition and data mining; learning processes: supervised and unsupervised, deterministic and statistical; clustering; single layer and multilayer perceptrons; least-mean-square, back propagation, and Al-Alaoui algorithms; radial-basis function networks; committee machines; principal component analysis; self-organizing maps; and current topics of interest.

EECE 694 Digital Image Processing 3 cr.
A course on two-dimensional signals and systems; image formation and perception; representation, coding, filtering restoration, and enhancements; feature extraction and scene analysis; introduction to computer vision.
EECE 694L Image Processing Lab 1 cr.
The EECE 694L graduate lab comprises a set of MATLAB/C++ based lab experiments in different image processing topics covering image pre and post processing techniques, image compression, morphological transformations, image restoration and enhancement techniques, color image processing, computer vision basics, and geographical image processing. In addition, students will be exposed to software optimizations for real time image processing using SIMD instructions. **Prerequisite: EECE 694 or EECE 603, or consent of instructor.**

EECE 695 Adaptive Filtering 3 cr.
A course that examines the fundamentals of optimal filtering and estimation, Wiener filters, linear prediction, steepest-descent and stochastic gradient algorithms; frequency-domain adaptive filters; method of least squares, recursive least squares, fast fixed order and order-recursive (lattice) filters; misadjustment, convergence and tracking analyses, stability issues, finite precision effects; connections with Kalman filtering; and nonlinear adaptive filters.

EECE 696 Applied Parallel Programming 3 cr.
This course is an introduction to parallel programming, and GPU computing. Topics include GPU as part of the PC architecture; CUDA, CUDA threads and CUDA memory; floating point performance; open CL, MPI, and reductions and their implementation. The course also includes application case studies, current topics and a course case study. **Prerequisite: EECE 321; Senior or graduate standing.**

EECE 697/MECH 646 Wheeled Mobile Robotics 3 cr.
A course that provides an in-depth coverage of wheeled mobile robots. The material covers: Nonholonomy and integrability of kinematic constraints. Modeling: kinematics, dynamics and state-space representation. Nonlinear control strategies (open-loop and closed-loop). Five case studies are covered during the course: car-like, cart-like, omni-directional wheeled, mobile wheeled pendulums and bike-like robots. **Prerequisite: Senior or graduate standing.**

EECE 698/MECH 650 Autonomous Mobile Robotics 3 cr.
This course is designed to provide engineering graduate and 4th year students with the opportunity to learn about autonomous mobile robotics. Topics include sensor modeling, vehicle state estimation, map-based localization, linear and nonlinear control, and simultaneous localization and mapping. **Prerequisites: EECE 230, EECE 312, and MECH 435 or EECE 230 and EECE 460.**

EECE 699/MECH 647 Hydraulic Servo Systems 3 cr.
A graduate lecture course which teaches the fundamentals of modeling and control of hydraulic servo-systems. It provides theoretical background and practical techniques for the modeling, identification and control of hydraulic servo-systems. Classical and advanced control algorithms are discussed. The use of Matlab/Simulink and DYMOLA will be an integral part in this course. **Prerequisites: MECH 314 and MECH 435 or MECH 314 and EECE 460.**

EECE 731 Advanced Topics in Complexity Theory 3 cr.
The course covers advanced topics in computational complexity theory. Topics include: hierarchy theorems; relativization; non-uniform models of computations; branching programs and circuits, relations, and lower bounds; alternation and the polynomial hierarchy; interactive proofs; probabilistically checkable proofs; pseudorandomness: hardness versus randomness paradigm, generators for space bounded computations, special purpose generators. **Prerequisite: EECE 631 or consent of instructor.**
EECE 732 Pseudorandomness 3 cr.
Pseudorandomness is a branch of computational complexity theory whose aim is to construct randomness generators which use little randomness, but still appear random to computations with limited time, space, or circuit resources. This course covers the basics of the area of pseudorandomness. Topics include: Randomized complexity classes review; Background material from coding theory; Computational indistinguishability and pseudorandom generators; Hardness versus randomness: Nisan-Wigderson generator, Impagliazzo-Wigderson theorem; Simple generators: k-wise independence, almost k-wise independence, and small-bias spaces; Unconditional generators for constant depth circuits, low-degree polynomials, and space-bounded computation; DNF counting algorithms; Weak random sources, randomness extractors, and Trevisan’s extractor. Prerequisite: EECE 631, or consent of the instructor.

Special Courses and Thesis

EECE 700 Approved Experience for EICT Students 0 cr.
EECE 796 Special Project
An assigned project of not more than 3-credit hours, supervised by a faculty member
EECE 797 Seminar
EECE 798 Special Topics
Every semester
EECE 799 Thesis
Every semester. Prerequisite: EECE 799T
EECE 799T Comprehensive Exam
Every semester 0 cr.
EECE 898 Advanced Topics in Electrical and Computer Engineering
EECE 980 Qualifying Exam Part I: Comprehensive Exam
Every semester 0 cr.
EECE 981 Qualifying Exam Part II: Defense of Thesis Proposal
Every semester 0 cr.
EECE 982 PhD Thesis
Every semester. Taken while total required credit hours have not been completed. 3 cr.
EECE 983 PhD Thesis
Every semester. Taken while total required credit hours have not been completed. 6 cr.
EECE 984 PhD Thesis
Every semester. Taken while total required credit hours have not been completed. 9 cr.
EECE 985 PhD Thesis
Every semester. Taken while total required credit hours have not been completed. 12 cr.
EECE 986 PhD Thesis
Every semester. Taken while total required credit hours have not been completed. 0 cr.
EECE 987 PhD Thesis Defense
Every semester 0 cr.