Department of Biochemistry and Molecular Genetics

Chairperson: Jaffa, Ayad
Professors: Al-Aqeel, Aida (Adjunct); Boustany, Rose-Mary; Darwiche, Nadine; Dbaibo, Ghassan; Habib-Abdul Karim, Aida; Jaffa, Ayad; Usta, Julnar; Ziyadeh, Fuad
Associate Professors: Kurban, Mazen; Nemer, Georges
Assistant Professors: Kobeissy, Firas; Refaat, Marwan
Associates: Hasan, Anwarul; Karam, Pascale; Melhem, Nada; Yazbek, Soha

The Department of Biochemistry and Molecular Genetics offers undergraduate courses to Nursing and Medical Laboratory Sciences Program (MLSP) students and graduate courses to medical students and graduate students in the graduate program leading to a master's degree (MS) or doctoral degree (PhD) in Biomedical Sciences.

The requirements for admission to the graduate program are a BA or BS degree from a university and an academic record with a cumulative grade average of 80 and above in major courses. Students should have a background in chemistry, biology, or a related medical science. The graduate program consists of a minimum of two years including didactic, interactive, and practical training leading to the MS. Graduating students must finish 21 credits of graduate courses, pass a comprehensive exam, and submit a thesis (9 credits) based on independent research. The 21 credits of graduate courses include a total of 9 credits of core courses and 12 credits of elective courses.

Required MS courses in Biomedical Sciences track Biochemistry include: BIOC 321 (1 cr.); BIOC 322 (1 cr.); BIOC 323 (2 cr.); BIOC 325 (2 cr.); HUMR 305 (3 cr.).

Required PhD courses in Biomedical Sciences. Refer to page 431 of Graduate Catalogue.

BIOC 246 Biochemistry for Nursing 60.0; 4 cr.
A course that provides an introduction to basic concepts in biochemistry. It discusses the main biochemical pathways in the cell and defines the interrelations between the different metabolic pathways. The course is composed of three units: (a) general chemistry (b) organic chemistry (c) biochemistry. Offered to BS Nursing and is open to undergraduates in related sciences. *First semester.*

BIOC 255 Biochemistry for MLSP 45.0; 3 cr.
A course that provides an overview of structure, function, and metabolism of basic biological micro/macro molecules; a general review of the genetic makeup; and emphasizes the clinical relevance by correlating disease to basic information. *The course is an introductory biochemistry course offered to undergraduate students in the Medical Lab Technology Program and related fields. Second semester.*
BIOC 302 Developmental Biochemistry 48.0; 3 cr.
A course that discusses the pre- and post-natal development of cardiac and skeletal muscles as well as hemopoiesis. This course is a mix of didactic lectures and interactive teaching. Each topic is presented by a faculty member and further illustrated by an article discussed by the students. Open to all graduate students in basic biomedical sciences and biology. Prerequisites: BIOC 321 and BIOC 322, or the consent of the coordinator. Second semester.

BIOC 303 Molecular Biology of Cancer 48.0; 3 cr.
A course that deals with the regulatory mechanisms of tumor cell growth and cancer formation at the cellular, molecular, genetic, and epigenetic levels. This course includes a discussion of recent developments in the intra- and/or inter-cellular mechanisms involved in cellular proliferation, cell death, invasion, and metastasis. Open to all graduate students in basic biomedical sciences and biology. Second semester.

BIOC 305 Biochemical Research 48.0; 3 cr.
An elective course that discusses the theoretical basis of ongoing research projects. This course consists of didactic lectures, student presentation, and written assignments on novel aspects related to each topic. The course is open to all graduate students. Prerequisite: BIOC 300 or consent of coordinator. Summer.

BIOC 306 Mediators in Vascular Biology and Inflammation 32.0; 2 cr.
An elective course that describes the different eicosanoids and their role in vascular biology and in mediating inflammation. Open to graduate students in basic biomedical sciences and biology, and to medical doctors who want to enhance their knowledge in the field. Second semester or summer.

BIOC 307/308 Biochemical Methods 0.128; 4 cr. (each)
A course that focuses on the basic principles and applications of the techniques of molecular biology, spectrophotometry, and chromatography. Open to all graduate students. Prerequisite: BIOC 300 or a background in biology. Summer; alternate years.

BIOC 309 Proteins and Enzymes 22.20; 2 cr.
An elective course open to all graduate students either as 2 credits or as 1 credit as 309A/309B, respectively. This course is composed of two units. Unit I: Protein Architecture discusses the stabilizing forces directing protein folding and thus conformation, introducing students to the various existing protein data banks. Unit II: Discusses the different kinetic approaches that may be used in studying the kinetic analysis of complex biological systems. Prerequisite: a biochemistry course and/or consent of coordinator. Summer; alternate years.

BIOC 310 Molecular Basis of Genetic and Metabolic Disorders 16.32; 2 cr.
A course that deals with the molecular basis of genetic and metabolic disorders. This course presents a detailed overview of the molecular basis of known genetic diseases. Students also learn the methods used to map chromosomal aberrations or DNA mutations implicated in congenital diseases. Elective. Open to non-biochemistry majors. Prerequisite: BIOC 300 or a background in biology. Second semester; alternate years.

BIOC 311/312 Biochemistry Tutorial 32.0; 2 cr. (each)
Students are assigned special topics (2) of current interest and are required to write a report evaluating the current status of the chosen subject. Open to biochemistry graduate students. First and second semesters and summer.
BIOC 313 Advanced Biochemistry 30.36; 3 cr.
A course that deals with the latest developments in molecular biology techniques and troubleshooting with hands-on bench experience. Elective. Open to all graduate students. Prerequisite: BIOC 300 or a background in biology. Second semester and summer.

BIOC 314 Mitochondria: Genetics, Protein, and Disease 32.0; 2 cr.
A course that provides a clear understanding of the biochemistry, molecular genetics, and bioenergetics of the mitochondria. It emphasizes the role of the mitochondrial dysfunction (mt-DNA mutations, environmental toxins) in the pathogenesis of mitochondrial diseases. Elective. Open to all graduate students in basic biomedical sciences and biology. Second semester and summer.

BIOC 315 Microscopic Biochemistry 20.40; 3 cr.
A course that introduces students to histochemical techniques and microscopic analysis. This includes embryonic dissection, antibody staining, in situ hybridization and whole mount hybridization. The course is composed of lectures and lab sessions. Open to all graduate students in basic sciences and related fields. Second semester; alternate years.

BIOC 316 Bioinformatics 0.30; 1 cr.
A course that introduces students to the latest bioinformatics literature. The format is a journal club in which recent journal articles are circulated and discussed. Guest lecturers are invited to present research related to the field. Students are also given an orientation on software currently available in the Computational Science and Bioinformatics Lab. Open to both basic biomedical sciences, and Arts and Sciences graduate students. Prerequisite: graduate standing.

BIOC 317 (a-k) Selected Topics in Biochemistry 16.0; 1 cr.
A series of elective courses (a-i), each 1 credit. Each course emphasizes the basic concepts and introduces recent developments in the fields of (a) proteins; (b) carbohydrates (c) lipids (d) molecular biology; (e) cancer; (f) apoptosis; (g) cyclooxygenase and lipoxygenase; (h) Biochemical Toxicology; (i) congenital heart problems; (j) special techniques in biochemistry: PCR, sequencing, transfection, Elisa, FPLC, SDS-PAGE, western blotting; (k) Copper metabolism: Wilson’s Disease. The course is open to medical doctors and graduates in medical and related fields. Prerequisite: consent of coordinator. Second semester and summer.

BIOC 321 Nucleic Acids and Basic Genetics 15.0; 1 cr.
This course discusses the principles of nucleic acids structure and function in eukaryotes. It includes the information for basic genetics in terms of genome structure as well as the diversity of gene regulation. Required from MS and PhD students in Biomedical Sciences. Requires consent of coordinator for other graduate disciplines. First semester.

BIOC 322 Protein Biochemistry 10.10; 1 cr.
This course deals with the biochemistry of proteins including their basic units, different structures, folding process and protein-protein interactions. It focuses on how changes at the structural level modify function. The course also covers the principles of protein purification and sequencing and introduces students to protein database, molecular modeling and systems biology. Required from MS and PhD students in Biomedical Sciences. Requires coordinator approval for other graduate disciplines. First semester.
BIOC 323 Cellular Metabolism and Regulation 25.10; 2 cr.
The course provides a coherent account of structural and metabolic biochemistry. It emphasizes basic concepts of dynamic state and regulatory mechanisms that allow conflicting pathways and reactions to occur while maintaining homeostasis at the organ and inter-organ levels. Required from MS and PhD students in biomedical sciences. Requires consent of coordinator for other graduate disciplines. First semester.

BIOC 325 Receptors and Signal Transduction 25.10; 2 cr.
This course covers classical pathways involved in receptor signaling and activation of downstream targets and the molecular mechanisms involved. It deals with the inter- and intracellular communication, from the generation of signaling molecules through the cellular responses. Required from MS and PhD students in biomedical sciences. Requires consent of coordinator for other graduate disciplines. First semester.

BIOC 395A/B Comprehensive Exam 0 cr.
Prerequisite: Consent of advisor.

BIOC 399 MS Thesis 9 cr.
A 9 credit hour course in which students conduct original research under faculty supervision. Faculty research focus includes: molecular mechanisms and mediators of inflammation, congenital heart problems, Wilson’s disease, diabetes, atherosclerosis, inflammatory mediators, sphingolipid metabolism, genetics of autism and dermatological disorder, mechanism of brain injury, cancer, cell death, and cyclooxygenase.