Department of Mathematics

Chairperson: Raji, Wissam V.
Professors Emeriti: Muwafi, Amin; Yff, Peter
Associate Professors: Alhakim, Abbas M.; El Khoury, Sabine S.; Raji, Wissam V.; Tlas, Tamer M.
Assistant Professors: Azar, Monique E.; Bertrand, Florian J.; Della Sala Giuseppe, A.; El Smaily, Mohammad I.; Monni, Stefano
Lecturers: #Fayyad, Dolly J.; Yamani, Hossam A.
Instructors: #AlHakim, Roy H.; #Ashkar, Alice N.; #Berjawi, Razan A.; #Bou Eid, Michella J.; Fleihan, Najwa S.; Itani-Hatab, Maha S.; Khachadourian, Zadour A.; #Mroue, Fatima K.; #Nahle, Zeina W.; #Nashef, Fida M.; #Nassif, Rana G.; #Rahhal, Lina A.; #Tannous, Joumana A.

The Department of Mathematics offers programs leading to the degrees of Bachelor of Science (BS) and Bachelor of Arts (BA) in Mathematics, Applied Mathematics, and Statistics. It also offers programs leading to the degree of Master of Science (MS) in Mathematics.

Mission Statement

The Department of Mathematics subscribes to the view that “Mathematics as an expression of the Human mind reflects the active will, the contemplative reason, and the desire for aesthetic perfection.” Through the different fields of Algebra, Analysis, Geometry, Number Theory, Statistics, and Applied Mathematics, the Department aims to train students in quantitative reasoning, in dealing with abstraction, in enhancing their sense of formalism, in tackling Mathematical problems, and in writing clear and rigorous proofs. The training will help the student acquire a sound balance between abstract generality and colorful individuality, and between the qualitative and quantitative aspects of Mathematics. It also will help the student master the theory through a clear comprehension of the theoretical aspects, but without losing sight of applications. Graduates of the Mathematics Department should be well placed to work in various professional areas of Education, Finance, Information Technology, or for pursuing graduate studies in Mathematics or a related area.

BA or BS in Mathematics

A student opting for the program in Applied Mathematics can earn either a BA or a BS degree. The science requirements for the BS are fulfilled by at least 2 science courses (or 6 science credits) chosen in departments in the FAS; the arts requirements for the BA are fulfilled by 2 courses (6 arts credits) chosen in departments in the FAS. The Mathematics requirement is the same for both degrees and consists of 39 credits in Mathematics courses as follows:

MATH 201, MATH 202, MATH 210, MATH 218 or Math 219, MATH 223, MATH 224, MATH 227, MATH 233, MATH 251, MATH 281, and 9 more credits chosen from Mathematics courses numbered 211 and above.

#part time

Undergraduate Catalogue 2016–17
In addition, the student will choose 9 credits in one applied discipline or track from the following list:

- Computer Science: CMPS 212, 255, 256, 257, 258, 287
- Natural Sciences: PHYS 210, 211, 212, 217, 235, 236; CHEM 201, 217, 218.
- Engineering or Health Sciences.

University General Education Requirements

6 credits in English Communication Skills and 3 credits in Arabic Communication skills; 12 credits in the Humanities; 6 credits in Social Sciences (covered by the departmental requirements for BA); 6 credits in Natural Sciences (covered by the departmental requirements for BS); and 3 credits in Quantitative Thought (covered as a Math major).

A transfer student who has done well in MATH 218 can count it toward the mathematics major instead of MATH 219, subject to departmental approval. In such a case, the department will usually require the student to take MATH 220.

Students wishing to pursue graduate study in mathematics are strongly urged to take MATH 220, MATH 242, and MATH 213 or MATH 216. They may also want to consider taking one or more graduate course in their senior year. Students with an interest in applied mathematics are urged to take MATH 202, MATH 220, MATH 224, MATH 251, and MATH 234, and to choose their additional courses from those that include a significant use of mathematical techniques. Students interested in high school teaching are encouraged to include MATH 202, MATH 213, MATH 251, and MATH 261 among their courses.

A minor in mathematics requires 18 credits: MATH 201, MATH 210; either MATH 218 or MATH 219; and 9 more credits in mathematics courses numbered MATH 202, MATH 211 or above, or statistics courses numbered 230 or above.

BA or BS in Applied Mathematics

A student opting for the program in Applied Mathematics can earn either a BA or a BS degree. The science requirements for the BS are fulfilled by at least 2 science courses (or 6 science credits) chosen in departments in the FAS; the arts requirements for the BA are fulfilled by 2 courses (6 arts credits) chosen in departments in the FAS. The Mathematics requirement is the same for both degrees and consists of 39 credits in Mathematics courses as follows:

MATH 201, MATH 202, MATH 210, MATH 218, MATH 223, MATH 224, MATH 227, MATH 233, MATH 251, MATH 281, and 9 more credits chosen from Mathematics courses numbered 211 and above.

In addition, the student will choose 9 credits in one applied discipline or track from the following list:

1. Computer Science
2. Economics/Econometrics
3. Natural Sciences
4. Engineering and Health Sciences
University General Education Requirements

6 credits in English Communication Skills and 3 credits in Arabic Communication Skills; 12 credits in the Humanities; 6 credits in Social Sciences (covered by the departmental requirements for BA); 6 credits in Natural Sciences (covered by the departmental requirements for BS); and 3 credits in Quantitative Thought (covered as a Math major).

A minor in Applied Mathematics requires 18 credits: MATH 201, MATH 210; either MATH 218 or MATH 219; and 9 more credits in mathematics courses numbered MATH 202, MATH 211 or above, or statistics courses numbered 230 or above.

BA or BS in Statistics

The department requires 9 credits in courses numbered 200 or above in the sciences for the BS degree, and at least 9 credits in courses numbered 200 or above in the arts (humanities or social sciences) for the BA degree. In both cases, it is recommended that at least 6 of these 9 credits be in disciplines that use quantitative methods and be chosen in conjunction with the student's faculty advisor. In addition, the departmental requirements are as follows:

- **In statistics:** STAT 233, STAT 234, STAT 235, STAT 236, STAT 237 and STAT 238, and 9 more credits chosen from MATH 202 and from mathematics, statistics, and computer science courses numbered 212 or above, excluding STAT 230.
- **In mathematics:** MATH 201, MATH 210, and MATH 218 or MATH 219.
- **In computer science:** CMPS 200.

Students planning to go for higher education in statistics are advised to take their electives in advanced mathematics courses, such as MATH 223 and MATH 227. Other students are encouraged to choose among their electives MATH 251 and other computing-oriented courses.

University General Education Requirements

6 credits in English Communication Skills and 3 credits in Arabic Communication Skills; 12 credits in the Humanities; 6 credits in Social Sciences (covered by the departmental requirements for BA); 6 credits in Natural Sciences (covered by the departmental requirements for BS); and 3 credits in Quantitative Thought (covered as a Math major).

It is to be noted that STAT 201, STAT 210, and STAT 230 are mainly service courses. STAT 201 is essentially equivalent to EDUC 227, and STAT 210 is essentially equivalent to ECON 213. Students can get credit for only one of the following: STAT 201, STAT 210, STAT 230, STAT 233, EDUC 227, ECON 213.

A minor in statistics requires 18 credits: MATH 201, MATH 210, and STAT 233, and 9 more credits in statistics courses numbered 211 or above, excluding STAT 230.
Course Descriptions

Mathematics

MATH 101 Calculus and Analytic Geometry I 3.1; 3 cr.
Limits, continuity, differentiation with application to curve plotting; Rolle’s theorem; integration with application to area, distance, volume, arc-length; fundamental theorem of calculus, transcendental functions. MATH 101 may be taken for credit after a student has passed MATH 203. MATH 203 may not be taken for credit after a student has passed Math 101. Every semester.

MATH 102 Calculus and Analytic Geometry II 3.1; 3 cr.
Methods of integration, improper integrals, polar coordinates, conic sections, analytic geometry in space, parametric equations, and vector functions and their derivatives. Prerequisite: MATH 101. Every semester.

MATH 201 Calculus and Analytic Geometry III 3.1; 3 cr.
Multivariable functions, partial derivatives, cylindrical and spherical coordinates, multiple integrals, sequences and series, and integration in vector fields. Prerequisite: MATH 102. Every semester.

MATH 202 Differential Equations 3.1; 3 cr.
Surface integrals, Stokes theorem, divergence theorem; first-order differential equations, linear differential equations, series solutions, Bessel’s and Legendre’s functions, Laplace transform, and systems. Prerequisite: MATH 201. Every semester.

MATH 203 Mathematics for Social Sciences I 3.0; 3 cr.
Polynomials, factoring, first- and second-degree equations, inequalities, absolute value, straight lines, Gaussian elimination, functions, graphs, exponential and logarithmic functions, and differentiation. Not open to students with prior credit in MATH 101 (or its equivalent) or MATH 201. MATH 101 may be taken for credit after a student has passed MATH 203. MATH 203 may not be taken for credit after a student has passed MATH 101. Every semester.

MATH 204 Mathematics for Social Sciences II 3.0; 3 cr.
Matrix operations, inverses, determinants, set operations, permutations, combinations, probability, rate of change, techniques of integration, differential equations, graphs of multivariate functions, partial derivatives, and optimization. Prerequisite: MATH 101 or MATH 203. Every semester.

MATH 210 Introduction to Analysis 3.0; 3 cr.
The real numbers, completeness, sequences, some basic topology of the real line, compact sets, Heine-Borel theorem, continuous functions, intermediate value theorem, uniform continuity, extreme values, differentiation, mean-value theorem, Taylor’s theorem, and integration, sequences and series of functions. Prerequisite: MATH 201. Annually.
MATH 211 Discrete Structures 3.1; 3 cr.
Logical reasoning, sets, relations and functions; mathematical induction, counting, and simple
finite probability theory; analysis of algorithms, complexity; recurrence relations and difference
equations; truth tables and switching circuits; graphs and trees; strings and languages. This
course is equivalent to CMPS 211. Annually.

MATH 212 Introductory Partial Differential Equations 3.0, 3 cr.
Partial differential equations as mathematical models in science, Fourier series, Fourier
inversion, Gibbs phenomenon, applications of Fourier series to partial differential equations
(heat equation, Laplace equation, wave equation), Sturm-Liouville Systems, Fourier and
Laplace transforms and applications to partial differential equations, pointwise and uniform
convergence of sequences and series of functions. Prerequisites: MATH 201 and MATH 202.
For non-Math majors. Students cannot receive credit for both Math 212 and MATH 224. Every
semester.

MATH 213 Higher Geometry 3.0; 3 cr.
Topics chosen from isometries of Euclidean space, inversion, elements of differential geometry,
the Frenet frame, curvature, torsion, the pseudo-sphere, hyperbolic geometry, and affine and
projective geometry. Biennially.

MATH 214 Topology I 3.0; 3 cr.
Topological spaces, continuous functions, separation axioms, compactness, connectedness,
metrizable spaces, and finite product spaces. Prerequisite: MATH 210. Annually.

MATH 215 Introduction to Differential Geometry 3.0; 3 cr.
Parameterized curves and the Frenet-Serret frame, fundamental theorem for curves,
isoperimetric inequality, regular surfaces, Gauss map and the fundamental forms, curvature,
geodesics and parallel transport, Gauss-Bonnet theorem. Prerequisite: MATH 201 and MATH
218/219, or consent of instructor. Biennially.

MATH 216 Topology II 3.0; 3 cr.
A senior level course covering more advanced topics in topology. Prerequisite: Consent of
instructor. Biennially.

MATH 218 Elementary Linear Algebra with Applications 3.0; 3 cr.
An introduction to linear algebra at a less theoretical level than MATH 219. Systems of
linear equations and Gaussian elimination, vectors in Rn, matrices, determinants, vector
spaces, subspaces and dimension, orthogonal projection and least-squares approximation,
eigenvalues, eigenvectors, and selected applications. Students cannot receive credit for both
MATH 219 and MATH 218. Annually.

MATH 219 Linear Algebra I 3.0; 3 cr.
A rigorous introduction to linear algebra, with emphasis on proof and conceptual reasoning.
Vector spaces, linear transformations and their matrix representation, linear independence,
bases and dimension, rank-nullity, systems of linear equations, brief discussion of inner
products, projections, orthonormal bases, change of basis, determinants, eigenvalues,
eigenvectors, and spectral theorem. Students cannot receive credit for both MATH 219 and
MATH 218. Annually.
MATH 220 Linear Algebra II 3.0; 3 cr.
A deeper study of determinants, inner product spaces, and eigenvalue theory. Adjoints and the spectral theorem, primary decomposition, quotient spaces, diagonalization, triangularization, rational and Jordan forms, connection with modules over a PID, dual spaces, bilinear forms, and tensors. Prerequisite: MATH 241 or consent of instructor. Biennially.

MATH 223 Advanced Calculus 3.0; 3 cr.
Metric spaces, normed vector spaces, the derivative as a linear transformation, chain rule, vector versions of mean-value theorem, Taylor's formula, inverse and implicit function theorems, divergence, curl, differential forms, Stokes's theorem, and notions of differential geometry. Prerequisites: MATH 210 or MATH 224, and MATH 218 or MATH 219. Biennially.

MATH 224 Fourier Analysis and Applications 3.0; 3 cr.
Uniform and absolute convergence of infinite series and integrals, Laplace's method and Stirling's formula, Sturm-Liouville systems, Gram-Schmidt orthogonalization, orthogonal polynomials, Fourier series, Fourier integrals, Parseval and Plancherel theorems, and some partial differential equations. Prerequisites: MATH 210, and MATH 218 or MATH 219. Students cannot receive credit for both Math 212 and 224. Annually.

MATH 225 Wavelets and Applications 3.0; 3 cr.

MATH 227 Introduction to Complex Analysis 3.0; 3 cr.
Complex numbers, analytic functions, integration in the complex plane, Cauchy's integral theorem, Taylor series, Laurent series, singularities, residues, and contour integration. Prerequisites: MATH 201 and consent of instructor. Annually.

MATH 233 Advanced Probability and Random Variables 3.0; 3 cr.
Same description as STAT 233. Annually.

MATH 234 Introduction to Statistical Inference 3.0; 3 cr.
Same description as STAT 234. Annually.

MATH 238 Applied Probability Models 3.0; 3 cr.
Same description as STAT 238. Annually.

MATH 241 Introduction to Abstract Algebra 3.0; 3 cr.
Groups, subgroups, homomorphisms, normal subgroups and quotient groups, permutation groups, orbits and stabilizers, statement of Sylow theorems, rings, ideals, homomorphisms and quotient fields, and Euclidean and principal ideal domains. Prerequisite: MATH 219 or MATH 218 with a good understanding of proof, or consent of instructor. Annually.

MATH 242 Topics in Algebra 3.0; 3 cr.
Topics chosen among: fields and Galois theory, group theory, ring theory, modules over a PID, and other topics as determined by the instructor. Prerequisite: MATH 241. Biennially.
MATH 251 Numerical Computing 3.1; 3 cr.
Techniques of numerical analysis: number representations and round-off errors, root finding, approximation of functions, integration, solving initial value problems, Monte-Carlo methods. Implementations and analysis of the algorithms are stressed. Projects using MATLAB or a similar tool are assigned. Prerequisites: CMPS 200 or EECE 230, and MATH 201. This course is equivalent to CMPS 251. Annually.

MATH 261 Number Theory 3.0; 3 cr.
Prime factorization, the Euclidean algorithm, congruences, quadratic reciprocity, some Diophantine equations, binary quadratic forms, and continued fractions. Prerequisite: MATH 219 or consent of instructor. Annually.

MATH 271 Set Theory 3.0; 3 cr.
Operations on sets and families of sets, ordered sets, transfinite induction, axiom of choice and equivalent forms, and ordinal and cardinal numbers. Biennially.

MATH 281 Numerical Linear Algebra 3.0; 3 cr.
A course on direct and interactive methods for solving general and special systems of linear equations, covering LU decomposition, Choleski decomposition, nested dissection, marching algorithms; Jacobi, Gauss-Seidel, successive over-relaxation, alternating directions, and conjugate gradient iterative methods. This course is equivalent to CMPS 281. Prerequisites: (MATH 218 or MATH 219), and (MATH 251 or MATH 211). Biennially.

MATH 293 Senior Tutorial Courses 3.0; 3 cr.
Prerequisite: Senior standing.

BA in Mathematics: 39 Credits in Mathematics

<table>
<thead>
<tr>
<th>Modes of Analysis</th>
<th>English and Arabic (9)</th>
<th>Humanities (12+3)</th>
<th>Social Sciences (6)</th>
<th>Natural Sciences (6)</th>
<th>Quantitative Thought (27+12+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9+15+6+6+42)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required Arabic courses (3): ARAB 201A or any General Education Arabic communication skills (3), as determined by placement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required English courses (usually 6 cr.): ENGL 201(3), and/or 204(3), as determined by placement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required credits in the humanities: 12 credits including 6 credits from CVSP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Humanities or social science elective (3).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required courses (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required Electives (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required mathematics courses (27): MATH 201(3), 210(3), 214(3), 219(3), 223(3), 227(3), 233(3), 241(3), and at least one of 220(3) or 242(3).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required mathematics electives (12): MATH 202(3), and/or mathematics courses numbered 213 and above.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Required programming course (3): CMPS 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BS in Mathematics: 39 Credits in Mathematics

<table>
<thead>
<tr>
<th>Modes of Analysis</th>
<th>English and Arabic (9)</th>
<th>Humanities (12)</th>
<th>Social Sciences (6)</th>
<th>Natural Sciences (9)</th>
<th>Quantitative Thought (27+12+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9+12+6+9+42)</td>
<td>Required Arabic courses (3): ARAB 201 A or any General Education Arabic communication skills (3), as determined by placement.</td>
<td>Required credits in the humanities: 12 credits including 6 credits from CVSP.</td>
<td>Required Courses (6)</td>
<td>Required Electives (9)</td>
<td>Required mathematics courses (27): MATH 201(3), 210(3), 214(3), 219(3), 223(3), 227(3), 233(3), 241(3), and at least one of 220(3) or 242(3)</td>
</tr>
<tr>
<td></td>
<td>Required English courses (usually 6): ENGL 203(3), 204(3), as determined by placement.</td>
<td></td>
<td></td>
<td></td>
<td>Elective mathematics courses (12): MATH 202 (3), and/or courses numbered 213 and above.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Required programming course (3): CMPS 200</td>
</tr>
</tbody>
</table>

Seminar (0)
Laboratory
Research Project (0)

BA in Applied Mathematics: 39 Credits in Mathematics

<table>
<thead>
<tr>
<th>English and Arabic (9)</th>
<th>Humanities (12)</th>
<th>Social Sciences (12)</th>
<th>Sciences (6)</th>
<th>Quantitative Thought (39+3)</th>
<th>Free Electives (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Arabic courses (3): ARAB 201 A or any General Education Arabic communication skills (3), as determined by placement.</td>
<td>Required credits in the Humanities: 12 credits including 6 credits from CVSP.</td>
<td>6 credits in Social sciences. Must include one Economics course (3): ECON 211</td>
<td>6 credits in Sciences.</td>
<td>Required Applied Mathematics courses (30): MATH 201, 202, 210, 218, 223, 224, 227, 233, 251, 281.</td>
<td>Must include 9 credits chosen in one of the following concentration areas:</td>
</tr>
<tr>
<td></td>
<td>Required English courses (usually 6): ENGL 203(3), and/or 204(3), as determined by placement.</td>
<td>6 credits in Arts or Social sciences.</td>
<td></td>
<td>Required Mathematics electives (9): MATH courses numbered 211 and above.</td>
<td>Computer Science: CMPS 212, 255, 256, 257, 258, 287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Health Sciences.</td>
</tr>
</tbody>
</table>
BS in Applied Mathematics: 39 Credits in Mathematics

<table>
<thead>
<tr>
<th>English and Asian (9)</th>
<th>Humanities (12)</th>
<th>Social Sciences (6)</th>
<th>Sciences (6)</th>
<th>Quantitative Thought (39+3)</th>
<th>Free Electives (15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Arabic courses (3): ARAB 201A or any General Education Arabic communication skills (3), as determined by placement.</td>
<td>Required credits in the Humanities: 12 credits including 6 credits from CVSP.</td>
<td>Must include one Economics course (3): ECON 211.</td>
<td>6 credits in Sciences.</td>
<td>Required Applied Mathematics courses (30): MATH 201, 202, 210, 218, 223, 224, 227, 233, 251, 281.</td>
<td>Must include 9 credits chosen in one of the following concentration areas:</td>
</tr>
<tr>
<td>Required English courses (usually 6): ENGL 203(3), and/or 204(3), as determined by placement.</td>
<td></td>
<td></td>
<td></td>
<td>Required Mathematics electives (9): MATH courses numbered 211 and above.</td>
<td>Computer Science: CMPS 212, 255, 256, 257, 258, 287.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Natural Sciences: PHYS 210, 211, 212, 217, 235, 236; CHEM 201, 217, 218.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Engineering or Health Sciences.</td>
</tr>
</tbody>
</table>

Statistics

STAT 201 Elementary Statistics for the Social Sciences 3.0; 3 cr.
(Formerly MATH 207) Data organization and frequency distributions; measures of central tendency and dispersion; probability and random variables; binomial and normal distributions; correlation, regression, estimation, and hypothesis testing. Open only to arts students whose mathematical preparation does not allow them to take STAT 210. Students can get credit for only one of STAT 201, STAT 210, STAT 230, STAT 233, or ECON 213. Every semester.

STAT 210 Elementary Statistics for the Sciences 3.0; 3 cr.
(Formerly MATH 208) Populations, samples, and sampling error; types of data, frequency distributions, and graphical displays of data; empirical definition of probability and probability distributions; conditional probability, independence, Bayes’ rule, and counting rules; discrete and continuous distributions, random variables, binomial, normal, and t distributions; point and interval estimation and hypothesis testing; linear regression and correlation. Computer packages may be used to illustrate methods. Students can get credit for only one of STAT 201, STAT 210, STAT 230, STAT 233, or ECON 213. Every semester.

STAT 230 Introduction to Probability and Random Variables 3.0; 3 cr.
Display of data, properties of probability, methods of enumeration, conditional probability and independent events; univariate and bivariate distributions corresponding to both discrete and continuous variables; covariance and correlation, moment generating functions, independent random samples and the central limit theorem; basics of confidence intervals and hypothesis testing. Prerequisite: MATH 201. Students can get credit for only one of STAT 201, STAT 210, STAT 230, STAT 233, or ECON 213. Every semester.
STAT 233 Advanced Probability and Random Variables 3.0; 3 cr.
Axiomatic definition of probability, random variables, univariate and multivariate p.d.f. and c.d.f.; expectation; moment generating function; conditional distribution; families of discrete and continuous random variables; distribution of functions of random variables; stochastic convergence and convergence of distribution functions; the law of large numbers and the central limit theorem. Prerequisite: MATH 201. Students can get credit for only one of STAT 201, STAT 210, STAT 230, STAT 233, or ECON 213. Annually.

STAT 234 Introduction to Statistical Inference 3.0; 3 cr.
Sampling distribution; point and interval estimation; Neuman-Pearson theory of hypothesis testing; likelihood ratio test; sequential analysis; elementary decision theory. Prerequisite: STAT 233 or a grade of at least 70 in STAT 230. Annually.

STAT 235 Applied Regression Analysis 3.0; 3 cr.
Straight line regression, multiple regression, analysis of variance and analysis of covariance, multiple and partial correlation; hypothesis testing; confounding, interaction and regression diagnostics; discriminant and factor analysis. Prerequisite: STAT 234. Annually.

STAT 236 Sampling Techniques 3.0; 3 cr.
Simple random, systematic, stratified, cluster, and two-stage sampling; estimation of parameters and properties of estimates; ratio and regression estimates; problem of non-response. Prerequisite: STAT 234. Annually.

STAT 237 Applied Nonparametric Methods 3.0; 3 cr.
Order statistics; sign test, Wilcoxon signed-rank test, and Mann-Whitney test; run test and test for randomness; goodness of fit tests; efficiency. Prerequisite: STAT 234 or consent of instructor. Annually.

STAT 238 Applied Probability Models 3.0; 3 cr.
Conditional probability and expectation; discrete and continuous time Markov chains; Chapman-Kolmogorov difference and differential equations; limiting probabilities; branching, Poisson, and birth and death processes; distribution of arrival times; queuing theory. Prerequisite: STAT 233 or a grade of at least 70 in STAT 230. Annually.
BA in Statistics: 36 Credits in Statistics/Mathematics

<table>
<thead>
<tr>
<th>Modes of Analysis</th>
<th>English and Arabic (9)</th>
<th>Humanities (12+3)</th>
<th>Social Sciences (6)</th>
<th>Natural Sciences (6)</th>
<th>Quantitative Thought (9+18+9+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Courses (9+15+6+6+39)</td>
<td>• Required Arabic courses (3): ARAB 201A or any General Education Arabic communication skills (3) as determined by placement</td>
<td>• Required credits in the humanities: 12 credits including 6 credits from CVSP</td>
<td>• Required courses (6)</td>
<td>• Required Electives (6)</td>
<td>• Required mathematics courses (9): MATH 201(3), 210(3), 218 or 219(3)</td>
</tr>
<tr>
<td></td>
<td>• Required English courses (usually 6 cr.): ENGL 203(3), 204(3) as determined by placement</td>
<td>• Humanities or social science elective (3)</td>
<td></td>
<td></td>
<td>• Required statistics courses (18): STAT 233(3), 234(3), 235(3), 236(3), 237(3), 238(3)</td>
</tr>
<tr>
<td></td>
<td>Seminar (0)</td>
<td>Laboratory</td>
<td>Research Project (0)</td>
<td>CMPS 200</td>
<td>BS in Statistics: 36 Credits in Statistics/Mathematics</td>
</tr>
</tbody>
</table>

BS in Statistics: 36 Credits in Statistics/Mathematics

<table>
<thead>
<tr>
<th>Modes of Analysis</th>
<th>English and Arabic (9)</th>
<th>Humanities (12)</th>
<th>Social Sciences (6)</th>
<th>Natural Sciences (9)</th>
<th>Quantitative Thought (9+18+9+3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Courses (9+12+6+39)</td>
<td>• Required Arabic course (3): ARAB 201A or any General Education Arabic communication skills (3) as determined by placement</td>
<td>• Required credits in the humanities: 12 credits including 6 credits from CVSP</td>
<td>• Required Courses (6)</td>
<td>• Required Electives (9)</td>
<td>• Required mathematics courses (9): MATH 201(3), 210(3), 218 or 219(3)</td>
</tr>
<tr>
<td></td>
<td>• Required English courses (6 cr.): ENGL 203(3), 204(3), as determined by placement</td>
<td></td>
<td></td>
<td></td>
<td>• Required statistics courses (18): STAT 233(3), 234(3), 235(3), 236(3), 237(3), 238(3)</td>
</tr>
<tr>
<td></td>
<td>Seminar (0)</td>
<td>Laboratory</td>
<td>Research Project (0)</td>
<td>CMPS 200</td>
<td>BS in Statistics: 36 Credits in Statistics/Mathematics</td>
</tr>
</tbody>
</table>