The Department of Biochemistry offers undergraduate courses to nursing students and graduate courses to medical students and graduate students in the graduate program leading to a master’s degree (MSc).

The requirements for admission to the graduate program are a BA or BS degree from a university and an academic record with a cumulative grade average of 80 and above in major courses. Students should have a background in chemistry, biology, or a related medical science. The graduate program consists of a minimum of two years including didactic, interactive, and practical training leading to the Master of Science degree. Students must finish 21 credits of graduate courses; pass a comprehensive exam; and submit a thesis based on independent research. The 21 credits of graduate courses include a total of 15 credits of required courses and 6 credits of elective courses.

Required courses include: BIOC 300 (6 cr.); BIOC 302 (3 cr.); BIOC 304 (3 cr.) and MBIM 310 (3 cr.).

BIOC 246 Biochemistry for Nursing
A course that provides an introduction to basic concepts in biochemistry. It discusses the main biochemical pathways in the cell and defines the interrelations between the different metabolic pathways. The course is composed of three units: (a) general chemistry (b) organic chemistry (c) biochemistry. Offered to BS Nursing and is open to undergraduates in related sciences. Prerequisite: none. First semester.

BIOC 255 Biochemistry for MLTP
A course that provides an overview of structure, function, and metabolism of basic biological micro/macromolecules; a general review of the genetic makeup; and emphasizes the clinical relevance by correlating disease to basic information. The course is an introductory biochemistry course, offered to undergraduate students in the Medical Lab Technology Program and related fields. Second semester.

BIOC 300 Basic Biochemistry
A course that provides students with a coherent account of biochemistry and molecular biology, correlating clinical disorders with basic concepts. This course describes the living cell as a physiochemical, highly organized system that is precisely controlled, self-reproducing, and energy-generating. Homeostatic mechanisms, steady state, and molecular biology are fully described. Offered to medical students and graduate students. First semester.

BIOC 302 Developmental Biochemistry
A course that discusses the pre- and post-natal development of cardiac and skeletal muscles as well as hemopoiesis. This course is a mix of didactic lectures and interactive teaching. Each topic is presented by a faculty member and further illustrated by an article discussed by the students. The course is required by all graduates in biochemistry. Open to graduate students from other departments. Prerequisite: BIOC 300 or the consent of the coordinator. Second semester.
BIOC 304 Receptors and Signaling 48.0; 3 cr.
A course that presents classical pathways triggered by G-protein coupled receptors as well as the recent information and findings in the field. This course is required of all biochemistry graduate students. Open to graduates from other departments in the basic medical sciences and biology. Prerequisite: Biochemistry 300 or the consent of the coordinator. First semester.

BIOC 305 Biochemical Research 48.0; 3 cr.
An elective course that discusses the theoretical basis of ongoing research projects. This course consists of didactic lectures, student presentation, and written assignments on novel aspects related to each topic. The course is open to all graduate students. Prerequisite: basic biochemistry (BIOC 300) or consent of coordinator. Summer.

BIOC 306 Mediators in Vascular Biology and Inflammation 32.0; 2 cr.
An elective course that describes the different eicosanoids and their role in vascular biology and in mediating inflammation. Open to graduate students in basic medical sciences, biology, and to medical doctors who want to enhance their knowledge in the field. Second semester or summer.

BIOC 307/308 Biochemical Methods 0.128; 4 cr. (each)
A course that focuses on the basic principles and applications of the techniques of molecular biology, spectrophotometry, and chromatography. Open to all graduate students. Prerequisite: BIOC 300, or a background in biology. Summer, alternate years.

BIOC 309 Proteins and Enzymes 22.20; 2 cr.
An elective course open to all graduate students either as 2 credits or as 1 credit as 309A/309B, respectively. This course is composed of two units. Unit I: Protein Architecture discusses the stabilizing forces directing protein folding and thus conformation, introducing students to the various existing protein data banks. Unit II: Discusses the different kinetic approaches that may be used in studying the kinetic analysis of complex biological systems. Prerequisite: a biochemistry course and/or consent of coordinator. Summer, alternate years.

BIOC 310 Molecular Basis of Genetic and Metabolic Disorders 16.32; 2 cr.
A course that deals with the molecular basis of genetic and metabolic disorders. This course presents a detailed overview of the molecular basis of known genetic diseases. Students also learn the methods used to map chromosomal aberrations or DNA mutations implicated in congenital diseases. Elective. Open to non-biochemistry majors. Prerequisite: basic biochemistry or a background in biology. Second semester, alternate years.

BIOC 311/312 Biochemistry Tutorial 32.0; 2 cr. (each)
Students are assigned special topics (2) of current interest and are required to write a report evaluating the current status of the chosen subject. Open to biochemistry graduate students. First and second semesters and summer.

BIOC 313 Advanced Biochemistry 30.36; 3 cr.
A course that deals with the latest developments in molecular biology techniques and troubleshooting with hands-on bench experience. Elective. Open to all graduate students. Prerequisite: basic biochemistry or a background in biology. Second semester and summer.
BIOC 314 Mitochondria: Genetics, Protein, and Disease 32.0; 2 cr.
A course that provides a clear understanding of the biochemistry, molecular genetics, and
bioenergetics of the mitochondria. It emphasizes the role of the mitochondrial dysfunction (mt-DNA
mutations, environmental toxins) in the pathogenesis of mitochondrial diseases. Elective. Open to all
graduate students in basic sciences and biology graduates. Second semester, summer.

BIOC 315 Microscopic Biochemistry 20.40; 3 cr.
A course that introduces students to histochemical techniques and microscopic analysis. This includes
embryonic dissection, antibody staining, insituhybridization and whole mount hybridization. The
course is composed of lectures and lab sessions. Open to all graduate students, in basic sciences and
related fields. Second semester, alternate years.

BIOC 316 Bioinformatics 0.30; 1 cr.
A course that introduces students to the latest bioinformatics literature. The format is a journal club
in which recent journal articles are circulated and discussed. Guest lecturers are invited to present
research related to the field. Students are also given an orientation on software currently available
in the Computational Science and Bioinformatics Lab. Open to both basic medical science, and arts
and sciences graduate students. Prerequisite: graduate standing.

BIOC 317 (a-k) Selected Topics in Biochemistry 16.0; 1 cr.
A series of elective courses (a-i), each 1 credit. Each course emphasizes the basic concepts and
introduces recent developments in the fields of (a) proteins; (b) carbohydrates (c) lipids (d) molecular
biology; (e) cancer; (f) apoptosis; (g) cyclooxygenase and lipoxygenase; (h) Biochemical Toxicology;
(i) congenital heart problems; (j) special techniques in biochemistry: PCR, sequencing, transfection,
Elisa, FPLC, SDS-PAGE, western blotting; (k) Copper metabolism: Wilson’s Disease. The course is open
to medical doctors, graduates in medical and related fields. The consent of the coordinator is required.
No prerequisite offered during the second semester and summer session.

BIOC 319/320 MS Thesis 9 cr.
A 9 credit hour course in which students conduct original research under staff supervision. The
projects center around enzymology of ATPase, molecular mechanisms of inflammation, congenital
heart problems, Wilson’s disease, epilepsy, apoptosis, and cyclooxygenase.