This program has long been recognized as one of the best programs in the region. Many of our successful graduates are occupying professional positions in the irrigation industry both locally and in the region. As a graduate student in Irrigation, you will be exposed to state-of-the art classroom instruction, laboratory and field work and research in advanced irrigation technologies and real-world projects, professional irrigation design practices and more. Principles of water management from a conservation perspective will be stressed.

 AGSC 301             Statistical Methods in Agriculture                                                     2.3; 3 cr.

An investigation of the statistical techniques needed to design experiments and analyze and interpret agricultural research data. Prerequisites: STAT 210 or EDUC 227 and CMPS 209.  Fall and spring.

AGSC 310             Advanced Soil Physics                                                                        3.0; 3 cr.

Physical properties of soils in arid, semi-arid, and sub-humid regions; soil-water-plant-atmosphere relationships, plant water extraction, and evapotranspiration; salt and water flow in soils, soil heat flow, and modeling soil water extraction and evaporation.

AGSC 317              Surface and Groundwater Hydrology                                                3.0; 3 cr.

Relevant statistical concepts and extreme event distributions, rainfall frequency analysis, rainfall-runoff relationships, unit hydrograph theory, overland flow routing, and stochastic processes in hydrology. Occurrence, storage, distribution, and movement of ground water; confined and unconfined aquifer properties, well-aquifer hydraulics and relationships and ground water basin management.

AGSC 326             Surface Irrigation Engineering                                                            3.0; 3 cr.

Principles of design, operation, and evaluation of surface irrigation systems; irrigation field design and field measurement techniques. Prerequisite: consent of instructor.

AGSC 328             Sprinkler and Micro-Irrigation Engineering                                        3.0; 3 cr.

Fundamentals of design, operation, evaluation, and selection of pressurized irrigation systems; pipeline economics, pump hydraulics, and pumping plant design considerations.

AGSC 330 Integrated Water Resources Management                                                     3.0; 3 cr.

Quantitative methods for analyzing water resource problems. Topics covered include the design and management of facilities for river basin development, flood control, water supply, hydropower, and other activities related to water resources. Stochastic and deterministic methods for approaching and analyzing water resources problems,. Reservoir sizing, simulation, hydrologic time series analysis and optimization methods. 

AGSC 334              Remote Sensing of the Environment                                                  2.3; 3 cr.

Quantitative methods for analyzing remote sensing datasets from the agricultural and natural resources perspective. The principles of electromagnetic radiation, as well as the interactions of solar radiation with the earth's atmosphere will be explored. The spectral reflectance, transmittance and absorption characteristics of the three main Earth cover types– vegetation, soil and water– will be stressed. Spatial, spectral, and temporal characteristics of the major low-, medium- and high-resolution multispectral sensor systems and their data products will be studied and compared.​

AGSC 395             Graduate Seminar in Agricultural Science                                          1.0; 1 cr.

AGSC 396/396A   Comprehensive Exam                                                                                   0 cr.

GSC 399             MS Thesis​