Department of Computer Science

Chairperson: El-Hajj, Wassim M.

Professors: Attie, Paul C.; Safa, Haidar H.; Turkiyyah, George M.

Associate Professors: Abu Salem, Fatima K.; El-Hajj, Wassim

Assistant Professors: Dhaini, Ahmad; Elbassuoni, Shady; Jaber, Mohamad

Visiting Assistant Professor: Nassar, Mohamed

Senior Lecturer: Jureidini, Wadi’ N.

Instructors: Bdeir, Mahmoud; Sidani-Bohsali, Hayat A.

Part-Time Instructors: Aoude, Loa; Afra, Lama; Al Feel, Roaa; Akhras, Raphaelle Maria; Asfour, Yousif; Assaf, Rida; El Hajj, Mohamad; Farhat, Elham; Farran, Rami; Hamam, Mustafa; Hamandi, Ahmad; Helweh, Chadi; Jalloul, Manal; Moubarak, Mohammad; Naim, Joelle; Samman, Tayseer; Souadi, Chukri

The Department of Computer Science offers a program leading to the degree of Master of Science (MS) in Computer Science. For more information about the department, visit https://website.aub.edu.lb/fas/cs/Pages/index.aspx.

Mission Statement

The department of Computer Science at the American University of Beirut prepares students for advanced studies and professional careers in the dynamically changing world of computing and information technology. Our programs combine the theoretical foundations of computing with the practical knowledge of software development vital to industry, to provide broad and integrated curriculums.

The department offers a Bachelor of Science (BS) degree in computer science, designed to be completed typically in three years. It also offers a Master of Science (MS) program designed to provide advanced and specialized education in computing, offered in formats that meet the needs of both working professionals and full-time students.

The department has vigorous research programs in graphics and multimedia, networking and security, machine learning and data science, high-performance computing, data mining and information retrieval, and software engineering. Our faculty members are committed to contributing to the advancement of the field of computing through scholarly activities, in which our students play a vital role.
MS in Computer Science

In addition to the university requirements for graduate study in the Faculty of Arts and Sciences, students must complete: (1) 21 credits and a thesis (thesis option), (2) 27 credits and a project (project option), or (3) 30 credits of course work (course-based option), as detailed below. For all options, the student must take 9 credits in Theory (ex. CMPS 356), Systems (ex. CMPS 372 or CMPS 374), and Software (ex. CMPS 363). The remaining credits (12 for the thesis option, 18 for the project option, and 21 for the course-based option) are normally CMPS courses numbered 300 and above to be taken in coordination with the student’s advisor. For more information about the program, visit https://website.aub.edu.lb/fas/cs/Pages/index.aspx.

Course Descriptions

CMPS 350 Discrete Models for Differential Equations 3.1; 3 cr.
A detailed study of methods and tools used in deriving discrete algebraic systems of equations for ordinary and partial differential equations: finite difference and finite element discretization procedures; generation and decomposition of sparse matrices, finite-precision arithmetic, ill-conditioning and pre-conditioning, Scalar, vector and parallelized versions of the algorithms. The course includes tutorial “immersion” sessions in which students become acquainted with state-of-the-art scientific software tools on standard computational platforms. Prerequisites: Linear algebra and the equivalent of MATH/CMPS 251 (which can be taken concurrently) or consent of the instructor. Same as MATH 350. Occasionally.

CMPS 351 Optimization and Nonlinear Problems 3.1; 3 cr.

CMPS 354 The Finite Element Method 3.0; 3 cr.
A course that presents the theoretical foundations of the finite element method and some of its applications to partial differential equations. Topics include Sobolev spaces, existence and uniqueness of weak solutions and the Lax-Milgram lemma, regularity of weak solutions and a priori estimates, the Galerkin method, piecwise polynomial approximations, approximating solutions of boundary value problems for elliptic equations, and initial value problems for parabolic and hyperbolic equations. Occasionally.

CMPS 356 Design and Analysis of Algorithms 3.0; 3 cr.
A course that studies advanced data structures and algorithms, with an emphasis on the design of algorithms. Topics include advanced graph and search algorithms, dynamic programming, amortized analysis, parallelism, greedy and approximate algorithms, string and pattern matching, computational geometry and an introduction to the class of NP-complete problems. Annually.
CMPS 357 Special Topics in Theoretical Computer Science 3.0; 3 cr.
A course that covers the foundations of theoretical computer science. The course will (1) introduce mathematical logic, set theory, recursive function theory, probability theory, and (2) will cover the theoretical foundations of computer science (complexity theory, computability theory) and will briefly introduce some topics that have significant overlap with the foundations of computer science (information theory, game theory, number theory). A major goal of the course is to equip students with the mathematical material they need to be able to read and understand current research papers in computer science. Annually.

CMPS 358 Introduction to Symbolic Computing 3.0; 3 cr.
Introductory topics in computer algebra and algorithmic number theory that include fast multiplication of polynomials and integers, fast fourier transforms, primality testing and integers factorization. Applications to cryptography and pseudo-random number generation. Linear algebra and polynomial factorization over finite fields. Applications to error-correcting codes. Introduction to Grobner bases. Same as MATH 358. Occasionally.

CMPS 360 Special Topics in Computational Science 3.0; 3 cr.
A course on selected topics in computational science, which change according to the interests of visiting faculty, instructors and students. Selected topics cover state-of-the-art tools and applications in computational science. Prerequisite: Consent of instructor. Same as MATH 360. Occasionally.

CMPS 363 Advanced Software Engineering 3.0; 3 cr.
A course on state-of-the-art software engineering for large distributed and concurrent systems. Fundamental principles and concepts for specifying, designing, analyzing, implementing and testing such systems. Concurrent object oriented paradigms. Design patterns. Use of tools. Documentation using both formal and informal descriptions. Students will develop at least one large software system as part of the course. Annually.

CMPS 373 Parallel Computing 3.0; 3 cr.
A course that discusses the design, analysis and implementation of algorithms for parallel computers. Topics include selection, merging, sorting, searching, matrix computations, numerical problems and fast fourier transforms. Students develop skills in designing parallel algorithms and analyzing their asymptotic running time and memory requirements, and develop medium-sized parallel codes using modern languages and libraries. Annually.

CMPS 374 Compiler Construction 3.0; 3 cr.
Graduate students may be required to do extra reading, a term paper and/or an additional project. Same as CMPS 274. Annually.

CMPS 375 Distributed Systems 3.0; 3 cr.
A distributed system consists of a set of nodes located at networked computers and communicate only by passing messages. This course provides techniques to abstract, design and implement efficient, scalable and fault-tolerant distributed systems. Topics include, but are not limited to, inter-process communication, distributed synchronization and consensus (e.g., paxos, blockchain), fault-tolerance, distributed file systems (e.g., HDFS), and Hadoop ecosystem. Annually.
CMPS 377 Internals of Database Management Systems 3.0; 3 cr.
Graduate students taking the course are assigned extra work in the form of outside reading, a term paper and/or an additional project. Prerequisite: CMPS 277 or graduate standing. Same as CMPS 288. Occasionally.

CMPS 384 Advanced Computer Networks 3.0; 3 cr.
This course examines advanced topics in computer networks such as routing on the Internet, IP multicasting, quality of service, Internet telephony, IPv6, MultiProtocol Label switching (MPLS), network performance, network security, overlay networks, etc. The course also covers the architectures and main components of wireless local area networks (IEEE 802.11), Mobile IP Networks, Mobile Ad Hoc Networks (MANETS), and WiMax networks (as defined in IEEE 802.16 standard). Some other topics may be covered through students’ research projects, presentations and assigned reading. The course starts by presenting a quick overview of the major protocols of TCP/IP stack. Annually.

CMPS 385 Advanced Computer Graphics 3.0; 3 cr.
A course that presents the basic concepts of 3D computer graphics. Topics include 3D object representations and manipulations, 3D transformation and viewing, hidden-surface and hidden-line removal, shading models, rendering, texture mapping, ray-tracing and animation techniques. Occasionally.

CMPS 386 Computer-Aided Geometric Design 3.0; 3 cr.
Graduate students taking the course are assigned extra work in the form of outside reading, a term paper and/or an additional project. Same as CMPS 286. Occasionally.

CMPS 388 Computer Animation 3.0; 3 cr.
A course that introduces the basic techniques and algorithms in computer animation. Topics include: history and applications of computer animation, modeling, interpolation, key framing, morphing, deformation, forward and inverse kinematics, particle systems and rigid body dynamics. Occasionally.

CMPS 391 Information Retrieval and Web Search 3.0; 3 cr.
This course introduces graduate-level students to the basics of information retrieval, and the models and algorithms underlying modern search engines. Topics covered include: crawling; indexing; Boolean and vector space retrieval models; probabilistic information retrieval models; language models; top-k query processing; evaluation of information retrieval systems; relevance feedback; link analysis; latent semantic analysis; and information extraction. Occasionally.

CMPS 392 Machine Learning 3.0; 3 cr.
This course covers the theory, algorithms and applications of machine learning. The course focuses mainly on supervised learning approaches and balances theory and practice. Topics include the theory of generalization; bias-variance tradeoff; overfitting and regularization; the linear models including linear regression, logistic regression and support vector machines, and neural networks including deep ones such as convolutional neural networks and recurrent neural networks. The course provides hands-on training with the trendiest machine learning libraries such as Scikit-learn and TensorFlow. Students are expected to build a real-world machine learning application as a course project. Prerequisite: Consent of advisor. Annually.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPS 395A/B</td>
<td>Comprehensive Exam</td>
<td>0 cr.</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: Consent of advisor.</td>
<td></td>
</tr>
<tr>
<td>CMPS 396</td>
<td>Special Topics in Computer Science</td>
<td>1 - 3 cr.</td>
</tr>
<tr>
<td></td>
<td>A course in which topics may vary each semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and are expected to be in areas of active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>research. Students may register for this course</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twice (or more) on condition that course content</td>
<td></td>
</tr>
<tr>
<td></td>
<td>differs. Prerequisite: Consent of instructor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Annually.</td>
<td></td>
</tr>
<tr>
<td>CMPS 397</td>
<td>Computer Science Tutorial</td>
<td>1 - 3 cr.</td>
</tr>
<tr>
<td>CMPS 398</td>
<td>MS Project</td>
<td>3 cr.</td>
</tr>
<tr>
<td>CMPS 399</td>
<td>MS Thesis</td>
<td>9 cr.</td>
</tr>
</tbody>
</table>