American University of Beirut

Analysis Comprehensive Exam

Spring 2017 Time allowed: 3h

Part I: Real Analysis

Exercise 1. Let $f, g : \mathbb{R} \to \mathbb{R}$ be two continuous functions. Prove that $g \circ f$ is continuous.

Exercise 2. Let $\{a_n\}$ be an increasing sequence bounded above. Prove that $\{a_n\}$ is convergent.

Exercise 3. Let $\{a_n\}$ be a positive sequence. Suppose that $\lim_{n\to\infty}(a_n\sum_{k=1}^n a_k)=5$. Prove that $\{a_n\}$ converges and find its limit.

Problem 1. A function $f: I \to \mathbb{R}$, defined on an interval, is called *Lipschitz* if there exists a constant C > 0 such that for all $x, y \in I$ we have

$$|f(x) - f(y)| \le C|x - y|.$$

- (a) Let $I \subset \mathbb{R}$ be an interval and let $f: I \to \mathbb{R}$ be a function. Prove that if f is Lipschitz then f is uniformly continuous.
- (b) Let $f_1: \mathbb{R} \to \mathbb{R}$ defined by $f_1(x) = |x|$. Prove that f_1 is Lipschitz on \mathbb{R} .
- (c) Let $f_2:[a,b]\to\mathbb{R}$ defined by $f_2(x)=x^2$. Prove that f_2 is Lipschitz on [a,b].
- (d) Let $f_3: \mathbb{R} \to \mathbb{R}$ defined by $f_3(x) = x^2$. Prove that f_3 is not Lipschitz on \mathbb{R} .

Problem 2. Let $\{f_n\}$ be the sequence of functions $f_n: \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \sin(x/n)$.

- (a) Show that f_n converges pointwise and find the limit function f.
- (b) Does f_n converge uniformly on the set X, in the case where

i.
$$X = [0, \pi]$$
?

ii.
$$X = \mathbb{R}$$
?

Problem 3. Find the limit as $n \to \infty$ of

(a)
$$\int_0^1 t^n dt.$$

(b)
$$\int_{0}^{1} \frac{t^n}{1+t} dt$$
.

(c)
$$\int_0^1 \frac{nt^n}{1+t} dt.$$

Problem 4. Let $f:[0,+\infty)\to\mathbb{R}$ be a differentiable function such that f(0)=0 and $f(x)/x\to 0$ as $x\to\infty$.

- (a) For any $\epsilon>0$ show that there exists $\xi\in\mathbb{R}$ such that $|f'(\xi)|<\epsilon.$
- (b) Prove or disprove that $f'(x) \to 0$ as $x \to \infty$?
- (c) Find the limit of x f(x) as $x \to \infty$.

Problem 5.

- (a) Let $f, g : [0, 1] \to \mathbb{R}$ be continuous functions such that f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 0. Show that there exists $x_0 \in (0, 1)$ such that $f(x_0) = g(x_0)$.
- (b) Let $h : \mathbb{R} \to \mathbb{R}$ be a 2π -periodic continuous function. Show that there exists $x_0 \in \mathbb{R}$ such that $h(x_0 + \pi) = h(x_0)$.

Part II: Complex Analysis

Exercise 4. Let $D=\mathbb{C}\setminus\{0,1\}$. Consider the function $f(z)=\frac{1}{z(z-1)}$. Compute $\int_{\partial T}f(z)dz$ for any triangle T with boundary ∂T contained in D.

Exercise 5. Recall that a holomorphic function f has a zero of order k at $z_0 \in \mathbb{C}$ if in a neighborhood of z_0 it can be written as $f(z) = \alpha(z-z_0)^k + (z-z_0)^{k+1}h(z)$, where $\alpha \neq 0$ and h(z) is holomorphic on a neighborhood of z_0 . Suppose that f has a zero of order k at z_0 . Show that f'/f has a simple pole at z_0 with residue k.

Problem 6. For $t \in \mathbb{R}$ define $f_t : [0, \infty) \to \mathbb{R}$ by $f_t(x) = \frac{1}{x^2 + t^2}$.

- (a) Show that the integral $\int_0^{+\infty} f_t(x) dx$ is finite for $t \neq 0$ and it is not convergent for t = 0. (b) For $t \neq 0$, use the residue theorem to compute $\int_{-\infty}^{+\infty} f_t(x) dx$ as a function of t, and use this to evaluate $\int_0^{+\infty} f_t(x) dx.$ (c) Deduce that $\int_0^{+\infty} f_t(x) dx \to +\infty$ as $t \to 0$.

Problem 7.

- (a) Let $w \in \mathbb{C}$. Prove that $|e^w| = e^{\Re ew}$.
- (b) Let $f = u + iv : \mathbb{C} \to \mathbb{C}$ be a entire function such that $xu(x+iy) yv(x+iy) \le 0$. Prove that f is constant and determine the constant.