The Optimization of Beirut Airport’s Check-in and Luggage System

Rami El Kfouri
Industrial Engineering Department
American University of Beirut
Beirut, Lebanon
me20@mail.aub.edu

Afif Fatouh
Industrial Engineering Department
American University of Beirut
Beirut, Lebanon
agf05@mail.aub.edu

Simon Matta
Industrial Engineering Department
American University of Beirut
Beirut, Lebanon
snm18@mail.aub.edu

Wissam Obeid
Industrial Engineering Department
American University of Beirut
Beirut, Lebanon
wmo00@mail.aub.edu

Beirut Rafic Hariri International Airport’s ground handling processes lack efficiency. This inefficiency leads to high cost, low productivity, and low customer satisfaction. Therefore, we will tackle two major operations at the airport: the check-in and the luggage handling systems. This paper will present different tools and techniques used to analyze the current systems, and propose some improvements that aims to optimize the processes. According to several studies, an improvement in the airport processes can help boost tourism which is one of the most developed sectors in Lebanon. This can in return positively impact the Lebanese economy. In addition, the luggage operators carry excessively heavy loads for long periods of time, leaving them prone to injuries. Our team decided to study these operations which will consider the worker’s safety and will make every traveler’s life easier. Finally, this project would help our country achieve lower operations costs, and higher tourist’s revenues.

I. INTRODUCTION

Any traveler going through Beirut International Airport (BIA) will have to wait in line for hours and deal with the congestions and inefficiencies of the poorly designed processes. The nature of the problems that happen in the airport are closely related to industrial engineering fields since these problems generally include optimizing queues, layouts, and interfaces. The two major problems that travelers face are in the check-in area, where they sometimes spend more than two hours in queues just to collect a boarding pass, and in the luggage system, where they have to wait around the conveyor for long minutes before being able to collect their bags. The motive behind this study is not only to ensure a better experience for travelers, but to consider the workers’ safety and help boost the Lebanese economy by increasing the passengers’ airport expenditures. In fact, the lower the time spent at the counters (e.g., check-in counters, security check…) the more time the passengers have to spend on shopping and restaurants which would lead to an increase in the airport’s revenue [1]. This paper will introduce two main areas of Beirut International Airport that have a wide room for improvement, it will discuss different tools and methods used and will show how the mentioned processes were optimized.

II. OBJECTIVES

The goal of our project is to optimize two different processes at BIA:

A. Objective 1: Optimize the airport’s check-in process
 - Aim 1: Simulate the check-in queues
 - Aim 2: Determine the optimal number of check-in counters
 - Aim 3: Propose lean improvements to the customer’s experience

B. Objective 2: Enhance the luggage handling system
 - Aim 1: Improve the manual handling of luggage
 - Aim 2: Conduct a cost analysis for the automation of the luggage sorting system

III. BACKGROUND

The recent years have witnessed an ongoing growth in the aviation industry which seemed uncontrollable and unlimited. Numerous international airports have shown a tremendous increase in the number of passengers [2]. This growth endlessly challenges the overall experience of the passenger. Delays occur everywhere: parking your car, screening, security checking, checking-in at the counters, dropping your bags and boarding the aircraft. In fact, customer satisfaction is measured by the amount of time spent in the overall process. The luggage system at the BIA consists of four conveyor belts, two for each terminal (east and west). Each conveyor belt is linked to around 20 counters serving at most three flights at a time. Once the bag is dropped, its respective conveyor belt takes it through a 360° degree bar code scanner, saving all the passenger’s information (i.e. Name, address, number, arrival destination etc.). Then, the bag goes through a security-check machine (X-ray scanner) monitored by a controller room. The first check is done by the machine itself and the second by the controller room personnel. The bag can face two scenarios: either gets accepted and continues its direction towards the containers or gets rejected. In case of rejection, the conveyor belts will automatically change lanes and drop the bag in the controller room where it will be checked for any unacceptable
items. Unacceptable items will be removed and the affected traveler will be contacted. Once re-accepted, the bag will re-join the initial luggage lane toward the containers. In fact, each flight will have different containers for luggage sorting: one for priorities (the first to come out) and includes first and business class, and others for economy class which is divided by transit and local, depending whether the bags have to be unloaded at the arrival airport, or should be put back in another flight that the passenger will take. Workers will sort the bags using a barcode scanner, and will manually place the luggage in the corresponding container. In fact, to protect human welfare, the airport management team increased the height of the conveyor belt so that the worker does not bend to pick up the luggage (workers pick on average 400 bags/day according to BIA representative).

To achieve objectives similar to ours, researchers all over the world used a wide array of tools and techniques.

A. Data gathering and data analysis tools and techniques:

Researchers from the University at Buffalo [3] and the University of Naples [6] used a wide range of tools and techniques to address the issue of baggage handling and musculoskeletal disorders [7].

1. **Simulation and Analytical tools and techniques**

Researchers from the University at Buffalo [3] and the University of Naples [6] used a wide array of tools and techniques to optimize the airport’s check-in process. The main objective of the Amsterdam Schiphol Airport Study was to reduce queuing time in order to increase customer satisfaction. The aim of their study case was to gain insights on substitute check-in methods [6]. Airlines can use common check-in or dedicated check-in. Common check-in is used when passengers of different flights can check-in at the same counter. However, dedicated check-in serves passengers of the same flight. By simulating both scenarios, Joustra and Van Dijk found that common check-in leads to lower average queuing time than dedicated check-in. Another important factor was the ideal time a check-in counter should open prior to a flight [4]. At Beirut Airport, all counters open three hours before a flight. In the study of Schiphol airport in Amsterdam, it was revealed that 60% of the passengers arrive more than three hours before their flights’ departing time. That is not the case in Beirut Airport but a simple data collection can be used to validate this result. In our case, 141 people in total checked in to the flight and only seven people (~5%) were in the check-in queue prior to the start-of-service. In addition, according to Bern et al, musculoskeletal disorders are disposed to increase in six anatomical regions with increasing seniority for the baggage handlers. The same apply for the cumulated heavy listings done by the workers working in luggage system [6].

IV. METHODS

Many tools and techniques were used in order to optimize the airport’s processes.

A. **Objective 1: Optimize the airport’s check-in process**

The tools and techniques used to achieve this objective can be divided into 3 categories:

1) **Data gathering tools and techniques**
2) **Data analysis tools and techniques**
3) **Simulation and Analytical tools and techniques**

The above objective includes three main parts (aims): each requiring different tools, techniques and methods.

For the simulation part, data needed to be gathered, and that was done by the mean of a wide spectrum of techniques.

<table>
<thead>
<tr>
<th>TABLE I.</th>
<th>TABLE OF DIFFERENT TECHNIQUES USED TO GATHER DATA FOR THE SIMULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Tools / method used</td>
</tr>
<tr>
<td>Flow chart of the entire process</td>
<td>Observation of the process, and interview with employees and managers at MEAG (Middle East Airlines Ground Handling)</td>
</tr>
<tr>
<td>Service times at the counter</td>
<td>Mobile application called TimeStamp, as well as observation and manual note taking</td>
</tr>
</tbody>
</table>
After gathering the data, analysis needed to be done in order to fit distributions. The data was first cleaned using basic MS Excel tools, and then distributions were fitted using Input Analyzer software.

The simulation was done using Arena software. Inputs to the simulation included the process flow chart and the distributions fitted to the gathered data. The simulation’s results and outputs were analyzed using Output Analyzer software.

In order to come up with an optimal policy (i.e. how many counters would be open at different intervals of time), we used analytical concepts of queuing theory (1), as well as Little’s law (5).

$$W_q(M/M/c) = \left(\frac{a^c}{c! \mu (1-\rho)}\right) p_0$$ (1)

Where:
c represents the number of open counters
μ represents the service rate
λ represents the arrival rate of passengers

$$a = \frac{\lambda}{\mu}$$ (2)

$$\rho = \frac{\lambda}{c \mu}$$ (3)

$$p_0 = P\{0 \text{ customers in system}\} = \left(\sum_{n=0}^{\infty} \frac{a^n}{n!} + \frac{a^c}{c! (1-\rho)} \right)^{-1}$$ (4)

Little’s law:

$$L = \lambda W$$ (5)

Where:
L represents the average number of passengers in the system
W represents the average time a passenger will spend in queue
λ represents the arrival rate of passengers

By plugging (2), (3), and (4) in (1); we were able to calculate the mean waiting time in queue while varying c (which represents the number of open counters). The arrival rate of the passengers and the service rate were determined from the data gathered previously at the airport. The formula was recalculated for every 30 minutes interval because the arrival rate of passenger was variable throughout time. Fig. 1 shows different arrival rates of passengers as a function of time.

This technique outputted different waiting times for different numbers of open counters, and using a survey and literature, we were able to determine the optimal number of counters that should be open.

Lean techniques were used to improve customers’ experience. This includes 5S for organizing the counters (work stations) where passengers would check-in, as well as Ishikawa diagram to trace down the main issues that cause delay and confusion in the check-in area.

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Tools / method used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival times of passengers</td>
<td>Mobile application called TimeStamp, as well as observation and manual note taking</td>
</tr>
<tr>
<td>Number of open counters</td>
<td>Observation</td>
</tr>
<tr>
<td>Waiting times in queue for different passengers</td>
<td>Stopwatch</td>
</tr>
</tbody>
</table>
After running the simulation on arena, it was found that a passenger spends approximately 5 minutes in queue waiting to get served. The number of people in queue reaches its maximum two hours before the scheduled departure time of the flight. This result comes as no surprise since people usually rush to the airport during that time. The operators are busy 67% of the time and the average number of operators busy is 2.1.

Using queuing theory, the optimal number of check-in counters was found.

<table>
<thead>
<tr>
<th>Party size</th>
<th>Bags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>>3</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE II. AVERAGE SERVICE TIME AS A FUNCTION OF NUMBER OF BAGS AND PARTY SIZE

The maximum number of counters required using this dynamic allocation is 4. This should take place for a 30 minutes interval starting 2 hours prior to the scheduled departure. During that time approximately 35% of the total flight passengers check in making it the busiest out of all the other times.

In order to improve the customer’s experience in the check in area of the airport, we looked at the main wastes and problems related to that area. The latter lacks directions and guidance to the passengers. Once they reach the check in area, they randomly choose the east or west side without necessarily taking into consideration the location of their respective counters. Hence, they might spend additional time walking between the 2 sides. Therefore, some lean measures were undertaken: (1) the installation of screens in the entrance area that show counters allocation. By doing so the passengers will not spend unnecessary time walking erratically looking for their corresponding counter. (2) The addition of screens next to each check in queue that indicate the estimated time in queue allows passengers to set expectations once they stand in line. (3) The allocation of kiosks for automated boarding pass printing decreased the congestions in the queues and in the check in area. Finally, (4) the addition of information desks to help and guide lost passengers in their journey at the airport.

A. Optimize the airport’s check-in process

After having gathered data regarding the current process, analyzed the current system, and simulated the check-in queues; we were able to find an optimal policy, i.e. how many counters should be open at any interval of time. The results we got are similar to the ones that were previously found by researchers from the international Kansai Airport in Japan [5] as well as from the University of Naples [4], and thus validating our work. There are however some limitations to the results we got and that’s because the data we gathered is for an Airbus a 320 and a Boeing 777 which are the two most common aircraft flown in the world and particularly in Beirut Airport. The optimal counter allocation would not result in extra costs for the airport, because the personnel is there, but the issue lies with the schedule of operation.

The lean improvements proposed in order to make the check-in area an optimized space resulted in a better customer journey. The screens implemented at the entrance of the airport, and that show which airlines are located in the east terminal and which are located in the west terminal reduced passengers confusion and reduced the time a passenger usually waste trying to locate which counter he or she should head to.

Implementing the remaining proposed improvements, as well as the dynamic counter allocation, to all the counters will result in an optimal flow of passengers throughout the system. No more confusion would exist among passengers, and the maximum waiting time in queue would be decreased to 6.6 minutes (this will occur 2 hours prior to departure time), which will lead to satisfied customers, and more time to spend shopping in the duty free area, which will increase the airport’s revenues.

B. Enhance the luggage handling system

Although the objective is still not fully developed and analysis is still going on, we were able to determine how much MEAG is spending on damaged bags. We will be proposing an optimization for the system that will result in less money spent on damaged bags, as well as a system that takes into consideration the welfare and health of employees. Automation of the system will also be studied, and the results of the cost benefit analysis regarding the implementation of a
fully automated baggage handling system will be presented soon.

ACKNOWLEDGMENT

We would like to thank Dr. Maher Nouiehed and Dr. Nadine-Marie Moacdieh for their continuous help and support.

REFERENCES

